Switch to: References

Add citations

You must login to add citations.
  1. Decoherence in unorthodox formulations of quantum mechanics.Vassilios Karakostas & Michael Dickson - 1995 - Synthese 102 (1):61 - 97.
    The conceptual structure of orthodox quantum mechanics has not provided a fully satisfactory and coherent description of natural phenomena. With particular attention to the measurement problem, we review and investigate two unorthodox formulations. First, there is the model advanced by GRWP, a stochastic modification of the standard Schrödinger dynamics admitting statevector reduction as a real physical process. Second, there is the ontological interpretation of Bohm, a causal reformulation of the usual theory admitting no collapse of the statevector. Within these two (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Perturbations and Quantum Relaxation.Adithya Kandhadai & Antony Valentini - 2019 - Foundations of Physics 49 (1):1-23.
    We investigate whether small perturbations can cause relaxation to quantum equilibrium over very long timescales. We consider in particular a two-dimensional harmonic oscillator, which can serve as a model of a field mode on expanding space. We assume an initial wave function with small perturbations to the ground state. We present evidence that the trajectories are highly confined so as to preclude relaxation to equilibrium even over very long timescales. Cosmological implications are briefly discussed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Wave-Function as a Multi-Field.Mario Hubert & Davide Romano - 2018 - European Journal for Philosophy of Science 8 (3):521-537.
    It is generally argued that if the wave-function in the de Broglie–Bohm theory is a physical field, it must be a field in configuration space. Nevertheless, it is possible to interpret the wave-function as a multi-field in three-dimensional space. This approach hasn’t received the attention yet it really deserves. The aim of this paper is threefold: first, we show that the wave-function is naturally and straightforwardly construed as a multi-field; second, we show why this interpretation is superior to other interpretations (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Objective chance: not propensity, maybe determinism.Carl Hoefer - 2016 - Lato Sensu, Revue de la Société de Philosophie des Sciences 3 (1):31-42.
    One currently popular view about the nature of objective probabilities, or objective chances, is that they – or some of them, at least – are primitive features of the physical world, not reducible to anything else nor explicable in terms of frequencies, degrees of belief, or anything else. In this paper I explore the question of what the semantic content of primitive chance claims could be. Every attempt I look at to supply such content either comes up empty-handed, or begs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum mechanics: Historical contingency and the Copenhagen hegemony by James T. Cushing.B. J. Hiley - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (2):299-305.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum mechanics: Historical contingency and the Copenhagen hegemony by James T. Cushing.B. J. Hiley - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (2):299-305.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory? [REVIEW]B. J. Hiley - 2010 - Foundations of Physics 40 (4):356-367.
    In this paper we show that the three main equations used by Bohm in his approach to quantum mechanics are already contained in the earlier paper by Moyal which forms the basis for what is known as the Wigner-Moyal approach. This shows, contrary to the usual perception, that there is a deep relation between the two approaches. We suggest the relevance of this result to the more general problem of constructing a quantum geometry.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two Kinds of High-Level Probability.Meir Hemmo & Orly Shenker - 2019 - The Monist 102 (4):458-477.
    According to influential views the probabilities in classical statistical mechanics and other special sciences are objective chances, although the underlying mechanical theory is deterministic, since the deterministic low level is inadmissible or unavailable from the high level. Here two intuitions pull in opposite directions: One intuition is that if the world is deterministic, probability can only express subjective ignorance. The other intuition is that probability of high-level phenomena, especially thermodynamic ones, is dictated by the state of affairs in the world. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Probability and Typicality in Deterministic Physics.Meir Hemmo & Orly Shenker - 2015 - Erkenntnis 80 (3):575-586.
    In this paper we analyze the relation between the notion of typicality and the notion of probability and the related question of how the choice of measure in deterministic theories in physics may be justified. Recently it has been argued that although the notion of typicality is not a probabilistic notion, it plays a crucial role in underwriting probabilistic statements in classical statistical mechanics and in Bohm’s theory. We argue that even in theories with deterministic dynamics, like classical statistical mechanics (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Flat Physicalism.Meir Hemmo & Orly Shenker - 2022 - Theoria 88 (4):743-764.
    This paper describes a version of type identity physicalism, which we call Flat Physicalism, and shows how it meets several objections often raised against identity theories. This identity theory is informed by recent results in the conceptual foundations of physics, and in particular clar- ifies the notion of ‘physical kinds’ in light of a conceptual analysis of the paradigmatic case of reducing thermody- namics to statistical mechanics. We show how Flat Physi- calism is compatible with the appearance of multiple realisation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • How Quantum Theory Helps Us Explain.Richard Healey - 2012 - British Journal for the Philosophy of Science (1):axt031.
    I offer an account of how the quantum theory we have helps us explain so much. The account depends on a pragmatist interpretation of the theory: this takes a quantum state to serve as a source of sound advice to physically situated agents on the content and appropriate degree of belief about matters concerning which they are currently inevitably ignorant. The general account of how to use quantum states and probabilities to explain otherwise puzzling regularities is then illustrated by showing (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • How Quantum Theory Helps Us Explain.Richard A. Healey - 2015 - British Journal for the Philosophy of Science 66 (1):1-43.
    I offer an account of how the quantum theory we have helps us explain the enormous variety of phenomena it is generally taken to explain. The account depends on what I have elsewhere called a pragmatist interpretation of the theory. This rejects views according to which a quantum state describes or represents a physical system, holding instead that it functions as a source of sound advice to physically situated agents like us on the content and appropriate degree of belief about (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Experimental metaphysics2: The double standard in the quantum-information approach to the foundations of quantum theory.Amit Hagar - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (4):906-919.
    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one’s system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the ‘apparent’ collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Explaining the Unobserved—Why Quantum Mechanics Ain’t Only About Information.Amit Hagar & Meir Hemmo - 2006 - Foundations of Physics 36 (9):1295-1234.
    A remarkable theorem by Clifton, Bub and Halvorson (2003) (CBH) characterizes quantum theory in terms of information--theoretic principles. According to Bub (2004, 2005) the philosophical significance of the theorem is that quantum theory should be regarded as a ``principle'' theory about (quantum) information rather than a ``constructive'' theory about the dynamics of quantum systems. Here we criticize Bub's principle approach arguing that if the mathematical formalism of quantum mechanics remains intact then there is no escape route from solving the measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Two Approaches to Reduction: A Case Study from Statistical Mechanics.Bixin Guo - forthcoming - Philosophy of Science:1-36.
    I argue that there are two distinct approaches to understanding reduction: the ontology-first approach and the theory-first approach. They concern the relation between ontological reduction and inter-theoretic reduction. Further, I argue for the significance of this distinction by demonstrating that either one or the other approach has been taken as an implicit assumption in, and has in fact shaped, our understanding of what statistical mechanics is. More specifically, I argue that the Boltzmannian framework of statistical mechanics assumes and relies on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bohm's metaphors, causality, and the quantum potential.Marcello Guarini - 2003 - Erkenntnis 59 (1):77 - 95.
    David Bohm's interpretation of quantum mechanics yields a quantum potential, Q. In his early work, the effects of Q are understood in causal terms as acting through a real (quantum) field which pushes particles around. In his later work (with Basil Hiley), the causal understanding of Q appears to have been abandoned. The purpose of this paper is to understand how the use of certain metaphors leads Bohm away from a causal treatment of Q, and to evaluate the use of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Replacing the Singlet Spinor of the EPR-B Experiment in the Configuration Space with Two Single-Particle Spinors in Physical Space.Michel Gondran & Alexandre Gondran - 2016 - Foundations of Physics 46 (9):1109-1126.
    Recently, for spinless non-relativistic particles, Norsen and Norsen et al. show that in the de Broglie–Bohm interpretation it is possible to replace the wave function in the configuration space by single-particle wave functions in physical space. In this paper, we show that this replacment of the wave function in the configuration space by single-particle functions in the 3D-space is also possible for particles with spin, in particular for the particles of the EPR-B experiment, the Bohm version of the Einstein–Podolsky–Rosen experiment.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Bohmian Approach to the Problems of Cosmological Quantum Fluctuations.Sheldon Goldstein, Ward Struyve & Roderich Tumulka - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are all particles real?Sheldon Goldstein, James Taylor, Roderich Tumulka & Nino Zanghi - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):103-112.
    In Bohmian mechanics elementary particles exist objectively, as point particles moving according to a law determined by a wavefunction. In this context, questions as to whether the particles of a certain species are real---questions such as, Do photons exist? Electrons? Or just the quarks?---have a clear meaning. We explain that, whatever the answer, there is a corresponding Bohm-type theory, and no experiment can ever decide between these theories. Another question that has a clear meaning is whether particles are intrinsically distinguishable, (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Typicality vs. Probability in Trajectory-Based Formulations of Quantum Mechanics.Bruno Galvan - 2007 - Foundations of Physics 37 (11):1540-1562.
    Bohmian mechanics represents the universe as a set of paths with a probability measure defined on it. The way in which a mathematical model of this kind can explain the observed phenomena of the universe is examined in general. It is shown that the explanation does not make use of the full probability measure, but rather of a suitable set function deriving from it, which defines relative typicality between single-time cylinder sets. Such a set function can also be derived directly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Weak Value, Quasiprobability and Bohmian Mechanics.Kazuki Fukuda, Jaeha Lee & Izumi Tsutsui - 2017 - Foundations of Physics 47 (2):236-255.
    We clarify the significance of quasiprobability in quantum mechanics that is relevant in describing physical quantities associated with a transition process. Our basic quantity is Aharonov’s weak value, from which the QP can be defined up to a certain ambiguity parameterized by a complex number. Unlike the conventional probability, the QP allows us to treat two noncommuting observables consistently, and this is utilized to embed the QP in Bohmian mechanics such that its equivalence to quantum mechanics becomes more transparent. We (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From Bohm’s Vision of Quantum Processes to Quantum Field Theory... to the Transactional Approach. Variations on the Theme. [REVIEW]Davide Fiscaletti - 2022 - Foundations of Physics 52 (3):1-25.
    The vision of quantum physics developed by David Bohm, and especially the idea of the implicit order, can be considered the true epistemological foundation of quantum field theory and the idea of a quantum vacuum that underlies the observable forms of matter, energy and space-time. Assuming the non-locality as the crucial visiting card of quantum processes, it is thus possible to arrive directly to the transactional interpretation and to the idea of a non-local quantum vacuum in which the behaviour of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How (not) to understand weak measurements of velocities.Johannes Fankhauser & Patrick M. Dürr - 2021 - Studies in History and Philosophy of Science Part A 85:16-29.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum Causal Models, Faithfulness, and Retrocausality.Peter W. Evans - 2018 - British Journal for the Philosophy of Science 69 (3):745-774.
    Wood and Spekkens argue that any causal model explaining the EPRB correlations and satisfying the no-signalling constraint must also violate the assumption that the model faithfully reproduces the statistical dependences and independences—a so-called ‘fine-tuning’ of the causal parameters. This includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of Näger, who argues that the central ideas of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The GRW Flash Theory: A Relativistic Quantum Ontology of Matter in Space-Time?Michael Esfeld & Nicolas Gisin - 2014 - Philosophy of Science 81 (2):248-264.
    John Bell proposed an ontology for the GRW modification of quantum mechanics in terms of flashes occurring at space- time points. This article spells out the motivation for this ontology, inquires into the status of the wave function in it, critically examines the claim of its being Lorentz invariant, and considers whether it is a parsimonious but nevertheless physically adequate ontology.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Ontology of Bohmian Mechanics.M. Esfeld, D. Lazarovici, Mario Hubert & D. Durr - 2014 - British Journal for the Philosophy of Science 65 (4):773-796.
    The paper points out that the modern formulation of Bohm’s quantum theory known as Bohmian mechanics is committed only to particles’ positions and a law of motion. We explain how this view can avoid the open questions that the traditional view faces according to which Bohm’s theory is committed to a wave-function that is a physical entity over and above the particles, although it is defined on configuration space instead of three-dimensional space. We then enquire into the status of the (...)
    Download  
     
    Export citation  
     
    Bookmark   85 citations  
  • The Metaphysical Consequences of Counterfactual Skepticism.Nina Emery - 2017 - Philosophy and Phenomenological Research 94 (2):399-432.
    A series of recent arguments purport to show that most counterfactuals of the form if A had happened then C would have happened are not true. These arguments pose a challenge to those of us who think that counterfactual discourse is a useful part of ordinary conversation, of philosophical reasoning, and of scientific inquiry. Either we find a way to revise the semantics for counterfactuals in order to avoid these arguments, or we find a way to ensure that the relevant (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • On the Role of Density Matrices in Bohmian Mechanics.Detlef Dürr, Sheldon Goldstein, Roderich Tumulka & Nino Zanghí - 2005 - Foundations of Physics 35 (3):449-467.
    It is well known that density matrices can be used in quantum mechanics to represent the information available to an observer about either a system with a random wave function (“statistical mixture”) or a system that is entangled with another system (“reduced density matrix”). We point out another role, previously unnoticed in the literature, that a density matrix can play: it can be the “conditional density matrix,” conditional on the configuration of the environment. A precise definition can be given in (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Quantum physics without quantum philosophy.Detlef Dürr, Sheldon Goldstein & Nino Zanghì - 1995 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 26 (2):137-149.
    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrodinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Antidote or Theory?Michael Dickson - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (2):229-238.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • La Bohume.Neil Dewar - 2020 - Synthese 197 (10):4207-4225.
    This paper critically assesses whether quantum entanglement can be made compatible with Humean supervenience. After reviewing the prima facie tension between entanglement and Humeanism, I outline a recently-proposed Humean response, and argue that it is subject to two problems: one concerning the determinacy of quantities, and one concerning its relationship to scientific practice.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • La Bohume.Neil Dewar - 2016 - Synthese 197 (10):1-19.
    This paper critically assesses whether quantum entanglement can be made compatible with Humean supervenience. After reviewing the prima facie tension between entanglement and Humeanism, I outline a recently-proposed Humean response, and argue that it is subject to two problems: one concerning the determinacy of quantities, and one concerning its relationship to scientific practice.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Interpretation and equivalence; or, equivalence and interpretation.Neil Dewar - 2023 - Synthese 201 (4):1-24.
    This paper argues that much of the literature on interpreting scientific theories presupposes a certain picture of what interpretation involves: a picture according to which interpreting a theory is like translating from one language to another. In place of this “external” approach to interpretation, this paper proposes an “internal” approach, according to which interpretation is more concerned with delineating a theory’s internal semantic architecture.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Laws of Physics.Eddy Keming Chen - manuscript
    Despite its apparent complexity, our world seems to be governed by simple laws of physics. This volume provides a philosophical introduction to such laws. I explain how they are connected to some of the central issues in philosophy, such as ontology, possibility, explanation, induction, counterfactuals, time, determinism, and fundamentality. I suggest that laws are fundamental facts that govern the world by constraining its physical possibilities. I examine three hallmarks of laws--simplicity, exactness, and objectivity--and discuss whether and how they may be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bohmian mechanics.Sheldon Goldstein - 2008 - Stanford Encyclopedia of Philosophy.
    Bohmian mechanics, which is also called the de Broglie-Bohm theory, the pilot-wave model, and the causal interpretation of quantum mechanics, is a version of quantum theory discovered by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952. It is the simplest example of what is often called a hidden variables interpretation of quantum mechanics. In Bohmian mechanics a system of particles is described in part by its wave function, evolving, as usual, according to Schrödinger's equation. However, the (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ontologie quantistiche di particelle, campi e lampi.Nino Zanghi - unknown
    La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggi regolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondo macroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassa temperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, dai meccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’è quasi nulla nel mondo che (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Flux-Across-Surfaces Theorem.M. Daumer & S. Goldstein - unknown
    The quantum probability flux of a particle integrated over time and a distant surface gives the probability for the particle crossing that surface at some time. We prove the free fluxacross-surfaces theorem, which was conjectured by Combes, Newton and Shtokhamer [1], and which relates the integrated quantum flux to the usual quantum mechanical formula for the cross section. The integrated quantum flux is equal to the probability of outward crossings of surfaces by Bohmian trajectories in the scattering regime.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bohmian mechanics.Roderich Tumulka, Detlef Durr, Sheldon Goldstein & Nino Zanghi - 2009 - Compendium of Quantum Physics.
    Bohmian mechanics is a theory about point particles moving along trajectories. It has the property that in a world governed by Bohmian mechanics, observers see the same statistics for experimental results as predicted by quantum mechanics. Bohmian mechanics thus provides an explanation of quantum mechanics. Moreover, the Bohmian trajectories are defined in a non-conspiratorial way by a few simple laws.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Bohmian trajectories as the foundation of quantum mechanics.Sheldon Goldstein - unknown
    Bohmian trajectories have been used for various purposes, including the numerical simulation of the time-dependent Schr¨ odinger equation and the visualization of time-dependent wave functions. We review the purpose they were invented for: to serve as the foundation of quantum mechanics, i.e., to explain quantum mechanics in terms of a theory that is free of paradoxes and allows an understanding that is as clear as that of classical mechanics. Indeed, they succeed in serving that purpose in the context of a (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The quantum measurement problem: State of play.David Wallace - 2007 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses with first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Typical Humean worlds have no laws.Dustin Lazarovici - unknown
    The paper uses the concept of typicality to spell out an argument against Humean supervenience and the best system account of laws. It proves that, in a very general and robust sense, almost all possible Humean worlds have no Humean laws. They are worlds of irreducible complexity that do not allow for any systematization. After explaining typicality reasoning in general, the implications of this result for the metaphysics of laws are discussed in detail.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How Typical! An Epistemological Analysis of Typicality in Statistical Mechanics.Massimiliano Badino - manuscript
    The recent use of typicality in statistical mechanics for foundational purposes has stirred an important debate involving both philosophers and physicists. While this debate customarily focuses on technical issues, in this paper I try to approach the problem from an epistemological angle. The discussion is driven by two questions: (1) What does typicality add to the concept of measure? (2) What kind of explanation, if any, does typicality yield? By distinguishing the notions of `typicality-as-vast-majority' and `typicality-as-best-exemplar', I argue that the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Can We Quarantine the Quantum Blight?Craig Callender - manuscript
    In the science fiction novel Quarantine, Greg Egan imagines a universe where interactions with human observers collapse quantum wavefunctions. Aliens, unable to collapse wavefunctions, tire of being slaughtered by these collapses. In response they erect an impenetrable shield around the solar system, protecting the rest of the universe from human interference and locking humanity into a starless Bubble. When confronting scientific realism and the quantum, many philosophers try to do the theoretical counterpart of this fictional practical strategy. Quantum mechanics is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Probabilities in deBroglie-Bohm Theory: Towards a Stochastic Alternative (Version 0.1 beta).Patrick Dürr & Alexander Ehmann - manuscript
    We critically examine the role and status probabilities, as they enter via the Quantum Equilibrium Hypothesis, play in the standard, deterministic interpretation of deBroglie’s and Bohm’s Pilot Wave Theory (dBBT), by considering interpretations of probabilities in terms of ignorance, typicality and Humean Best Systems, respectively. We argue that there is an inherent conflict between dBBT and probabilities, thus construed. The conflict originates in dBBT’s deterministic nature, rooted in the Guidance Equation. Inquiring into the latter’s role within dBBT, we find it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations