Switch to: References

Add citations

You must login to add citations.
  1. Computability and recursion.Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (3):284-321.
    We consider the informal concept of "computability" or "effective calculability" and two of the formalisms commonly used to define it, "(Turing) computability" and "(general) recursiveness". We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • On Gödel Sentences and What They Say.Peter Milne - 2007 - Philosophia Mathematica 15 (2):193-226.
    Proofs of Gödel's First Incompleteness Theorem are often accompanied by claims such as that the gödel sentence constructed in the course of the proof says of itself that it is unprovable and that it is true. The validity of such claims depends closely on how the sentence is constructed. Only by tightly constraining the means of construction can one obtain gödel sentences of which it is correct, without further ado, to say that they say of themselves that they are unprovable (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The dynamical hypothesis in cognitive science.Tim van Gelder - 1998 - Behavioral and Brain Sciences 21 (5):615-28.
    According to the dominant computational approach in cognitive science, cognitive agents are digital computers; according to the alternative approach, they are dynamical systems. This target article attempts to articulate and support the dynamical hypothesis. The dynamical hypothesis has two major components: the nature hypothesis (cognitive agents are dynamical systems) and the knowledge hypothesis (cognitive agents can be understood dynamically). A wide range of objections to this hypothesis can be rebutted. The conclusion is that cognitive systems may well be dynamical systems, (...)
    Download  
     
    Export citation  
     
    Bookmark   217 citations  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and truth (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computable Diagonalizations and Turing’s Cardinality Paradox.Dale Jacquette - 2014 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 45 (2):239-262.
    A. N. Turing’s 1936 concept of computability, computing machines, and computable binary digital sequences, is subject to Turing’s Cardinality Paradox. The paradox conjoins two opposed but comparably powerful lines of argument, supporting the propositions that the cardinality of dedicated Turing machines outputting all and only the computable binary digital sequences can only be denumerable, and yet must also be nondenumerable. Turing’s objections to a similar kind of diagonalization are answered, and the implications of the paradox for the concept of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)L i D Z λ as a basis for PRA.Uwe Petersen - 2003 - Archive for Mathematical Logic 42 (7):665-694.
    This paper is a sequel to my [7]. It focuses on the notion of natural number as introduced in section 11 of that paper with regard to forms of induction and recursive definitions. One point is that this notion of natural number is somewhat weaker than the classical one in so far as it is defined in terms of a weak implication. The other point is the lack of even a weak form of extensionality. As a main result of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Not To Use the Church-Turing Thesis Against Platonism.R. Urbaniak - 2011 - Philosophia Mathematica 19 (1):74-89.
    Olszewski claims that the Church-Turing thesis can be used in an argument against platonism in philosophy of mathematics. The key step of his argument employs an example of a supposedly effectively computable but not Turing-computable function. I argue that the process he describes is not an effective computation, and that the argument relies on the illegitimate conflation of effective computability with there being a way to find out . ‘Ah, but,’ you say, ‘what’s the use of its being right twice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La historia y la gramática de la recursión: una precisión desde la obra de Wittgenstein.Sergio Mota - 2014 - Pensamiento y Cultura 17 (1):20-48.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reduction Techniques for Proving Decidability in Logics and Their Meet–Combination.João Rasga, Cristina Sernadas & Walter Carnielli - 2021 - Bulletin of Symbolic Logic 27 (1):39-66.
    Satisfaction systems and reductions between them are presented as an appropriate context for analyzing the satisfiability and the validity problems. The notion of reduction is generalized in order to cope with the meet-combination of logics. Reductions between satisfaction systems induce reductions between the respective satisfiability problems and (under mild conditions) also between their validity problems. Sufficient conditions are provided for relating satisfiability problems to validity problems. Reflection results for decidability in the presence of reductions are established. The validity problem in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Filippos A. Papagiannopoulos - 2018 - Dissertation, University of Western Ontario
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   3 citations