Switch to: References

Add citations

You must login to add citations.
  1. Minimal α-degrees.Richard A. Shore - 1972 - Annals of Mathematical Logic 4 (4):393-414.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Post’s Problem for ordinal register machines: An explicit approach.Joel David Hamkins & Russell G. Miller - 2009 - Annals of Pure and Applied Logic 160 (3):302-309.
    We provide a positive solution for Post’s Problem for ordinal register machines, and also prove that these machines and ordinal Turing machines compute precisely the same partial functions on ordinals. To do so, we construct ordinal register machine programs which compute the necessary functions. In addition, we show that any set of ordinals solving Post’s Problem must be unbounded in the writable ordinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursively enumerable vector spaces.G. Metakides - 1977 - Annals of Mathematical Logic 11 (2):147.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Degree theory on ℵω.C. T. Chong & Sy D. Friedman - 1983 - Annals of Pure and Applied Logic 24 (1):87-97.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An example related to Gregory’s Theorem.J. Johnson, J. F. Knight, V. Ocasio & S. VanDenDriessche - 2013 - Archive for Mathematical Logic 52 (3-4):419-434.
    In this paper, we give an example of a complete computable infinitary theory T with countable models ${\mathcal{M}}$ and ${\mathcal{N}}$ , where ${\mathcal{N}}$ is a proper computable infinitary extension of ${\mathcal{M}}$ and T has no uncountable model. In fact, ${\mathcal{M}}$ and ${\mathcal{N}}$ are (up to isomorphism) the only models of T. Moreover, for all computable ordinals α, the computable ${\Sigma_\alpha}$ part of T is hyperarithmetical. It follows from a theorem of Gregory (JSL 38:460–470, 1972; Not Am Math Soc 17:967–968, 1970) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragments of Kripke–Platek set theory and the metamathematics of $$\alpha $$ α -recursion theory.Sy-David Friedman, Wei Li & Tin Lok Wong - 2016 - Archive for Mathematical Logic 55 (7-8):899-924.
    The foundation scheme in set theory asserts that every nonempty class has an ∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\in $$\end{document}-minimal element. In this paper, we investigate the logical strength of the foundation principle in basic set theory and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-recursion theory. We take KP set theory without foundation as the base theory. We show that KP-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^-$$\end{document} + Π1\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On suborderings of the alpha-recursively enumerable alpha-degrees.Manuel Lerman - 1972 - Annals of Mathematical Logic 4 (4):369.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Friedberg Numbering in Fragments of Peano Arithmetic and α-Recursion Theory.Wei Li - 2013 - Journal of Symbolic Logic 78 (4):1135-1163.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ordinal machines and admissible recursion theory.Peter Koepke & Benjamin Seyfferth - 2009 - Annals of Pure and Applied Logic 160 (3):310-318.
    We generalize standard Turing machines, which work in time ω on a tape of length ω, to α-machines with time α and tape length α, for α some limit ordinal. We show that this provides a simple machine model adequate for classical admissible recursion theory as developed by G. Sacks and his school. For α an admissible ordinal, the basic notions of α-recursive or α-recursively enumerable are equivalent to being computable or computably enumerable by an α-machine, respectively. We emphasize the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Recursively invariant beta-recursion theory.Wolfgand Maass - 1981 - Annals of Mathematical Logic 21 (1):27.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some minimal pairs of alpha-recursively enumerable degrees.Manuel Lerman - 1972 - Annals of Mathematical Logic 4 (4):415.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Minimal Degrees in Generalized Recursion Theory.Michael Machtey - 1974 - Mathematical Logic Quarterly 20 (8-12):133-148.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two splitting theorems for beta-recursion theory.Steven Homer - 1980 - Annals of Mathematical Logic 18 (2):137.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inadmissibility, tame R.E. sets and the admissible collapse.Wolfgang Maass - 1978 - Annals of Mathematical Logic 13 (2):149-170.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Atomic models higher up.Jessica Millar & Gerald E. Sacks - 2008 - Annals of Pure and Applied Logic 155 (3):225-241.
    There exists a countable structure of Scott rank where and where the -theory of is not ω-categorical. The Scott rank of a model is the least ordinal β where the model is prime in its -theory. Most well-known models with unbounded atoms below also realize a non-principal -type; such a model that preserves the Σ1-admissibility of will have Scott rank . Makkai [M. Makkai, An example concerning Scott heights, J. Symbolic Logic 46 301–318. [4]] produces a hyperarithmetical model of Scott (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • In memoriam: Gerald E. Sacks, 1933–2019.Manuel Lerman & Theodore A. Slaman - 2022 - Bulletin of Symbolic Logic 28 (1):150-155.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Strong coding.Sy D. Friedman - 1987 - Annals of Pure and Applied Logic 35 (C):1-98.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Global and local admissibility: II. Major subsets and automorphisms.C. T. Chong - 1983 - Annals of Pure and Applied Logic 24 (2):99-111.
    Download  
     
    Export citation  
     
    Bookmark