Switch to: References

Add citations

You must login to add citations.
  1. The Quantum Mechanics of Minds and Worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum Information Theory and the Foundations of Quantum Mechanics.Christopher Gordon Timpson - 2013 - Oxford, GB: Oxford University Press.
    Christopher G. Timpson provides the first full-length philosophical treatment of quantum information theory and the questions it raises for our understanding of the quantum world. He argues for an ontologically deflationary account of the nature of quantum information, which is grounded in a revisionary analysis of the concepts of information.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Does quantum electrodynamics have an arrow of time?David Atkinson - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):528-541.
    Quantum electrodynamics is a time-symmetric theory that is part of the electroweak interaction, which is invariant under a generalized form of this symmetry, the PCT transformation. The thesis is defended that the arrow of time in electrodynamics is a consequence of the assumption of an initial state of high order, together with the quantum version of the equiprobability postulate.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophical Implications of Inflationary Cosmology.Joshua Knobe, Ken D. Olum & Alexander Vilenkin - 2006 - British Journal for the Philosophy of Science 57 (1):47-67.
    Recent developments in cosmology indicate that every history having a non-zero probability is realized in infinitely many distinct regions of spacetime. Thus, it appears that the universe contains infinitely many civilizations exactly like our own, as well as infinitely many civilizations that differ from our own in any way permitted by physical laws. We explore the implications of this conclusion for ethical theory and for the doomsday argument. In the infinite universe, we find that the doomsday argument applies only to (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Introduction.Jeffrey A. Barrett - 1995 - Topoi 14 (1):1-6.
    On Bohm's formulation of quantum mechanics particles always have determinate positions and follow continuous trajectories. Bohm's theory, however, requires a postulate that says that particles are initially distributed in a special way: particles are randomly distributed so that the probability of their positions being represented by a point in any regionR in configuration space is equal to the square of the wave-function integrated overR. If the distribution postulate were false, then the theory would generally fail to make the right statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • ‘Many Minds’ Interpretations of Quantum Mechanics.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (2):159-188.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Is the Past Determined?Herve Zwirn - 2021 - Foundations of Physics 51 (3):1-28.
    In a recent paper (Zwirn in Phys Essays 30: 3, 2017), I argued against backward in time effects used by several authors to explain delayed choice experiments. I gave an explanation showing that there is no physical influence propagating from the present to the past and modifying the state of the system at a time previous to the measurement. However, though the solution is straightforward in the case of delayed choice experiments involving only one particle, it is subtler in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Trends in the Philosophy of Physics.Henrik Zinkernagel - 2011 - Theoria 26 (2):215-241.
    A short review of some recent developments in the philosophy of physics is presented. I focus on themes which illustrate relations and points of common interest between philosophy of physics and three of its `neighboring' elds: Physics, metaphysics and general philosophy of science. The main examples discussed in these three `border areas' are decoherence and the interpretation of quantum mechanics; time in physics and metaphysics; and methodological issues surrounding the multiverse idea in modern cosmology.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Importance of Randomness in the Universe: Superdeterminism and Free Will.Sergey B. Yurchenko - 2021 - Axiomathes 31 (4):453-478.
    In physics, free will is debated mainly in regard to the observer-dependent effects. To eliminate them from quantum mechanics, superdeterminism postulates that the universe is a computation, and consciousness is an automaton. As a result, free will is impossible. Quantum no-go theorems tell us that the only natural phenomenon that might be able to account for every bit of freedom in the universe is quantum randomness. With randomness in Nature, the universe could not have been predetermined completely in the sense (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Objective Probability in Everettian Quantum Mechanics.Alastair Wilson - 2013 - British Journal for the Philosophy of Science 64 (4):709-737.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this article I propose some (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Undermind.Steven Weinstein - 1996 - Synthese 106 (2):241 - 251.
    David Albert and Barry Loewer have proposed a new interpretation of quantum mechanics which they call the Many Minds interpretation, according to which there are infinitely many minds associated with a given (physical) state of a brain. This interpretation is related to the family of many worlds interpretations insofar as it assumes strictly unitary (Schrödinger) time-evolution of quantum-mechanical systems (no reduction of the wave-packet). The Many Minds interpretation itself is principally motivated by an argument which purports to show that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Macroscopic Reality from Quantum Complexity.Don Weingarten - 2022 - Foundations of Physics 52 (2):1-103.
    Beginning with the Everett–DeWitt many-worlds interpretation of quantum mechanics, there have been a series of proposals for how the state vector of a quantum system might split at any instant into orthogonal branches, each of which exhibits approximately classical behavior. Here we propose a decomposition of a state vector into branches by finding the minimum of a measure of the mean squared quantum complexity of the branches in the branch decomposition. In a non-relativistic formulation of this proposal, branching occurs repeatedly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Absolute quantum mechanics.Steven Weinstein - 2001 - British Journal for the Philosophy of Science 52 (1):67-73.
    Whereas one can conceive of a relational classical mechanics in which absolute space and time do not play a fundamental role, quantum mechanics does not readily admit any such relational formulation.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • The Arrow of Time in Physics.David Wallace - 2013 - In Heather Dyke & Adrian Bardon (eds.), A Companion to the Philosophy of Time. Chichester, UK: Wiley. pp. 262–281.
    Every process studied in any science other than physics defines an arrow of time – to say nothing for the directedness of the processes of causation, inference, memory, control, and counterfactual dependence that occur in everyday life. The discussion in this chapter is confined to the arrow of time as it occurs in physics. The chapter briefly discusses those features of microscopic physics, which seem to conflict with time asymmetry. It explains just how this conflict plays out in the important (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • Reformulating Bell's theorem: The search for a truly local quantum theory.Mordecai Waegell & Kelvin J. McQueen - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 70:39-50.
    The apparent nonlocality of quantum theory has been a persistent concern. Einstein et al. and Bell emphasized the apparent nonlocality arising from entanglement correlations. While some interpretations embrace this nonlocality, modern variations of the Everett-inspired many worlds interpretation try to circumvent it. In this paper, we review Bell's "no-go" theorem and explain how it rests on three axioms, local causality, no superdeterminism, and one world. Although Bell is often taken to have shown that local causality is ruled out by the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The societal impact of the emerging quantum technologies: a renewed urgency to make quantum theory understandable.Pieter E. Vermaas - 2017 - Ethics and Information Technology 19 (4):241-246.
    This paper introduces the special issue The societal impact of the emerging quantum technologies as a contribution to a more inclusive societal debate on quantum technologies. It brings together five contributions. Three are authored by quantum technology researchers who give explorations of the possible impacts of quantum technologies on science, industry and society. The fourth contribution discusses within the framework of responsible research and innovation, the ways in which quantum technologies and the societal debate about them are presented in European (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is quantum indeterminism real? Theological implications.Claudia E. Vanney - 2015 - Zygon 50 (3):736-756.
    Quantum mechanics studies physical phenomena on a microscopic scale. These phenomena are far beyond the reach of our observation, and the connection between QM's mathematical formalism and the experimental results is very indirect. Furthermore, quantum indeterminism defies common sense. Microphysical experiments have shown that, according to the empirical context, electrons and quanta of light behave as waves and other times as particles, even though it is impossible to design an experiment that manifests both behaviors at the same time. Unlike Newtonian (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • David Wallace the emergent multiverse: Quantum theory according to the Everett interpretation.Lev Vaidman - 2015 - British Journal for the Philosophy of Science 66 (2):465-468.
    We have, then, a theory which is objectively causal and continuous, while at the same time subjectively probabilistic and discontinuous. It can lay claim to a certain completeness, since it applies to all systems, of whatever size, and is still capable of explaining the appearance of the macroscopic world. The price, however, is the abandonment of the concept of the uniqueness of the observer, with its somewhat disconcerting philosophical implications.
    Download  
     
    Export citation  
     
    Bookmark  
  • Informational branching universe.Pierre Uzan - 2010 - Foundations of Science 15 (1):1-28.
    This paper suggests an epistemic interpretation of Belnap’s branching space-times theory based on Everett’s relative state formulation of the measurement operation in quantum mechanics. The informational branching models of the universe are evolving structures defined from a partial ordering relation on the set of memory states of the impersonal observer. The totally ordered set of their information contents defines a linear “time” scale to which the decoherent alternative histories of the informational universe can be referred—which is quite necessary for assigning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ten Reasons to Care About the Sleeping Beauty Problem.Michael G. Titelbaum - 2013 - Philosophy Compass 8 (11):1003-1017.
    The Sleeping Beauty Problem attracts so much attention because it connects to a wide variety of unresolved issues in formal epistemology, decision theory, and the philosophy of science. The problem raises unanswered questions concerning relative frequencies, objective chances, the relation between self-locating and non-self-locating information, the relation between self-location and updating, Dutch Books, accuracy arguments, memory loss, indifference principles, the existence of multiple universes, and many-worlds interpretations of quantum mechanics. After stating the problem, this article surveys its connections to all (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Nonlocality and Information Flow: The Approach of Deutsch and Hayden. [REVIEW]Christopher Gordon Timpson - 2003 - Foundations of Physics 35 (2):313-343.
    Deutsch and Hayden claim to have provided an account of quantum mechanics which is particularly local, and which clarifies the nature of information transmission in entangled quantum systems. In this paper, a perspicuous description of their formalism is offered and their claim assessed. It proves essential to distinguish, as Deutsch and Hayden do not, between two ways of interpreting the formalism. On the first, conservative, interpretation, no benefits with respect to locality accrue that are not already available on either an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Objective probability and the mind-body relation.Paul Tappenden - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:8-16.
    Objective probability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett’s seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Evidence and Uncertainty in Everett’s Multiverse.Paul Tappenden - 2011 - British Journal for the Philosophy of Science 62 (1):99-123.
    How does it come about then, that great scientists such as Einstein, Schrödinger and De Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled not against the correctness of the formulae, but against their interpretation. [...] The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Everettian theory as pure wave mechanics plus a no-collapse probability postulate.Paul Tappenden - 2019 - Synthese 198 (7):6375-6402.
    Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; Wilson in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontological status of time in chemistry.N. Sukumar - 2020 - Foundations of Chemistry 22 (3):353-361.
    While temporal considerations are of prime importance for chemical reactions, as well as for molecular stability, most chemical concepts are not explicitly formulated on a diachronic basis. It will be argued here that a formulation explicitly incorporating temporal and epistemological considerations enables us to treat chemical reactions and chemical substances on ontologically equivalent terms, instead of assigning a more fundamental status to the latter. After all, in collision theory, a chemical substance is just a collision complex that takes too long. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hypothetical Frequencies as Approximations.Jer Steeger - 2024 - Erkenntnis 89 (4):1295-1325.
    Hájek (Erkenntnis 70(2):211–235, 2009) argues that probabilities cannot be the limits of relative frequencies in counterfactual infinite sequences. I argue for a different understanding of these limits, drawing on Norton’s (Philos Sci 79(2):207–232, 2012) distinction between approximations (inexact descriptions of a target) and idealizations (separate models that bear analogies to the target). Then, I adapt Hájek’s arguments to this new context. These arguments provide excellent reasons not to use hypothetical frequencies as idealizations, but no reason not to use them as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum propensities and the brain-mind connection.Henry P. Stapp - 1991 - Foundations of Physics 21 (12):1451-77.
    It is argued that an adequate scientific treatment of biological systems requires the use of an ontological interpretation of quantum mechanics, and that the propensity interpretation proposed by Popper and others, when applied to the brain, leads to a natural representation of conscious process within the quantum-mechanical description of brain process. Thus quantum mechanics, unlike classical mechanics, has a natural place for consciousness and, moreover, in a sense to be discussed, even requires it.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Book review. [REVIEW]Henry P. Stapp - 1996 - Foundations of Physics 26 (8):1091-1097.
    Download  
     
    Export citation  
     
    Bookmark  
  • The unresolved quantum dilemma.Euan J. Squires - 1996 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27 (3):389-395.
    Download  
     
    Export citation  
     
    Bookmark  
  • One mind or many? A note on the Everett interpretation of quantum theory.Euan J. Squires - 1991 - Synthese 89 (November):283-6.
    The Everett interpretation of quantum theory requires either the existence of an infinite number of conscious minds associated with each brain or the existence of one universal consciousness. Reasons are given, and the two ideas are compared.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Bundle Definition of Scientific Understanding and its Application to Quantum Physics.Vera Spillner - 2009 - Philosophia Naturalis 46 (2):279-305.
    Download  
     
    Export citation  
     
    Bookmark  
  • A New Organization of Quantum Theory Based on Quantum Probability.Stephen Bruce Sontz - 2023 - Foundations of Physics 53 (3):1-35.
    Quantum probability is used to provide a new organization of basic quantum theory in a logical, axiomatic way. The principal thesis is that there is one fundamental time evolution equation in quantum theory, and this is given by a new version of Born’s Rule, which now includes both consecutive and conditional probability as it must, since science is based on correlations. A major modification of one of the standard axioms of quantum theory allows the implementation of various mathematically distinct models (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: space–time and the wave function.Albert Solé & Carl Hoefer - 2015 - Synthese 192 (10):3055-3070.
    Download  
     
    Export citation  
     
    Bookmark  
  • The multiple-computations theorem and the physics of singling out a computation.Orly Shenker & Meir Hemmo - 2022 - The Monist 105 (1):175-193.
    The problem of multiple-computations discovered by Hilary Putnam presents a deep difficulty for functionalism (of all sorts, computational and causal). We describe in out- line why Putnam’s result, and likewise the more restricted result we call the Multiple- Computations Theorem, are in fact theorems of statistical mechanics. We show why the mere interaction of a computing system with its environment cannot single out a computation as the preferred one amongst the many computations implemented by the system. We explain why nonreductive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Cardinality of Future Worldlines in Discrete Spacetime Structures.Zeki Seskir & Ahmet Çevik - 2023 - Foundations of Physics 53 (3):1-18.
    We give an analysis over a variation of causal sets where the light cone of an event is represented by finitely branching trees with respect to any given arbitrary dynamics. We argue through basic topological properties of Cantor space that under certain assumptions about the universe, spacetime structure and causation, given any event x, the number of all possible future worldlines of x within the many-worlds interpretation is uncountable. However, if all worldlines extending the event x are ‘eventually deterministic’, then (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Action of the Whole.Jonathan Schaffer - 2013 - Aristotelian Society Supplementary Volume 87 (1):67-87.
    I discuss an argument for the monistic idea that the cosmos is the one and only fundamental thing, drawing on the idea that the cosmos is the one and only thing that evolves by the fundamental laws.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Download  
     
    Export citation  
     
    Bookmark   88 citations  
  • Information, Reality, and Modern Physics.Emmanuel Saridakis - 2016 - International Studies in the Philosophy of Science 30 (4):327-341.
    Since special relativity and quantum mechanics, information has become a central concept in our description and understanding of physical reality. This statement may be construed in different ways, depending on the meaning we attach to the concept of information, and on our ontological commitments. One distinction is between mind-independent ‘Shannon information’ and a traditional conception of information, connected with meaning and knowledge. Another, orthogonal, distinction is between information considered as a fundamental physical entity, and an ontological agnosticism where physics is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Delineando o problema da medição na mecânica quântica: o debate de Margenau e Wigner versus Putnam.Frederik Moreira dos Santos & Osvaldo Pessoa Júnior - 2011 - Scientiae Studia 9 (3):625-644.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is the World Objective?Shantena Augusto Sabbadini - 2014 - Open Journal of Philosophy 4 (2):107-116.
    Download  
     
    Export citation  
     
    Bookmark  
  • Observers and Locality in Everett Quantum Field Theory.Mark A. Rubin - 2011 - Foundations of Physics 41 (7):1236-1262.
    A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory (Rubin in Found. Phys. 32:1495–1523, 2002). Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Observer in the Quantum Experiment.Bruce Rosenblum & Fred Kuttner - 2002 - Foundations of Physics 32 (8):1273-1293.
    A goal of most interpretations of quantum mechanics is to avoid the apparent intrusion of the observer into the measurement process. Such intrusion is usually seen to arise because observation somehow selects a single actuality from among the many possibilities represented by the wavefunction. The issue is typically treated in terms of the mathematical formulation of the quantum theory. We attempt to address a different manifestation of the quantum measurement problem in a theory-neutral manner. With a version of the two-slit (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Role of Mathematics in Physics: A Constructivist Epistemic Perspective.Andreas Quale - 2011 - Science & Education 20 (7-8):609-624.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A philosopher looks at quantum mechanics (again).Hilary Putnam - 2005 - British Journal for the Philosophy of Science 56 (4):615-634.
    A Philosopher Looks at Quantum Mechanics’ (Putnam [1965]) explained why the interpretation of quantum mechanics is a philosophical problem in detail, but with only the necessary minimum of technicalities, in the hope of making the difficulties intelligible to as wide an audience as possible. When I wrote it, I had not seen Bell ([1964]), nor (of course) had I seen Ghirardi et al. ([1986]). And I did not discuss the ‘Many Worlds’ interpretation. For all these reasons, I have decided to (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The philosophy and physics of affecting the past.Huw Price - 1984 - Synthese 61 (3):299 - 323.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Quantum Mechanics and Its Interpretations: A Defense of the Quantum Principles.Sébastien Poinat - 2020 - Foundations of Physics 50 (9):924-941.
    One of the most striking features of the epistemological situation of Quantum Mechanics is the number of interpretations and the many schools of thought, with no consensus on the way to understand the theory. In this article, I introduce a distinction between orthodox interpretations and heterodox interpretations of Quantum Mechanics: the orthodox interpretations preserve all the quantum principles while the heterodox interpretations replace at least one of them. Then, I argue that we have strong empirical and epistemological reasons to prefer (...)
    Download  
     
    Export citation  
     
    Bookmark