Switch to: References

Citations of:

The Limits of Abstraction

In Matthias Schirn (ed.), The Philosophy of Mathematics Today: Papers From a Conference Held in Munich From June 28 to July 4,1993. Oxford, England: Clarendon Press (1998)

Add citations

You must login to add citations.
  1. Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Propositional Logic of Frege’s Grundgesetze: Semantics and Expressiveness.Eric D. Berg & Roy T. Cook - 2017 - Journal for the History of Analytical Philosophy 5 (6).
    In this paper we compare the propositional logic of Frege’s Grundgesetze der Arithmetik to modern propositional systems, and show that Frege does not have a separable propositional logic, definable in terms of primitives of Grundgesetze, that corresponds to modern formulations of the logic of “not”, “and”, “or”, and “if…then…”. Along the way we prove a number of novel results about the system of propositional logic found in Grundgesetze, and the broader system obtained by including identity. In particular, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Abstraction Reconceived.J. P. Studd - 2016 - British Journal for the Philosophy of Science 67 (2):579-615.
    Neologicists have sought to ground mathematical knowledge in abstraction. One especially obstinate problem for this account is the bad company problem. The leading neologicist strategy for resolving this problem is to attempt to sift the good abstraction principles from the bad. This response faces a dilemma: the system of ‘good’ abstraction principles either falls foul of the Scylla of inconsistency or the Charybdis of being unable to recover a modest portion of Zermelo–Fraenkel set theory with its intended generality. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Bad company and neo-Fregean philosophy.Matti Eklund - 2009 - Synthese 170 (3):393-414.
    A central element in neo-Fregean philosophy of mathematics is the focus on abstraction principles, and the use of abstraction principles to ground various areas of mathematics. But as is well known, not all abstraction principles are in good standing. Various proposals for singling out the acceptable abstraction principles have been presented. Here I investigate what philosophical underpinnings can be provided for these proposals; specifically, underpinnings that fit the neo-Fregean's general outlook. Among the philosophical ideas I consider are: general views on (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Logicism as Making Arithmetic Explicit.Vojtěch Kolman - 2015 - Erkenntnis 80 (3):487-503.
    This paper aims to shed light on the broader significance of Frege’s logicism against the background of discussing and comparing Wittgenstein’s ‘showing/saying’-distinction with Brandom’s idiom of logic as the enterprise of making the implicit rules of our linguistic practices explicit. The main thesis of this paper is that the problem of Frege’s logicism lies deeper than in its inconsistency : it lies in the basic idea that in arithmetic one can, and should, express everything that is implicitly presupposed so that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maximally Consistent Sets of Instances of Naive Comprehension.Luca Incurvati & Julien Murzi - 2017 - Mind 126 (502).
    Paul Horwich (1990) once suggested restricting the T-Schema to the maximally consistent set of its instances. But Vann McGee (1992) proved that there are multiple incompatible such sets, none of which, given minimal assumptions, is recursively axiomatizable. The analogous view for set theory---that Naïve Comprehension should be restricted according to consistency maxims---has recently been defended by Laurence Goldstein (2006; 2013). It can be traced back to W.V.O. Quine(1951), who held that Naïve Comprehension embodies the only really intuitive conception of set (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Logical Indefinites.Jack Woods - 2014 - Logique Et Analyse -- Special Issue Edited by Julien Murzi and Massimiliano Carrara 227: 277-307.
    I argue that we can and should extend Tarski's model-theoretic criterion of logicality to cover indefinite expressions like Hilbert's ɛ operator, Russell's indefinite description operator η, and abstraction operators like 'the number of'. I draw on this extension to discuss the logical status of both abstraction operators and abstraction principles.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Conceptual Analysis and Epistemic Progress.Magdalena Balcerak Jackson - 2013 - Synthese 190 (15):3053-3074.
    This essay concerns the question of how we make genuine epistemic progress through conceptual analysis. Our way into this issue will be through consideration of the paradox of analysis. The paradox challenges us to explain how a given statement can make a substantive contribution to our knowledge, even while it purports merely to make explicit what one’s grasp of the concept under scrutiny consists in. The paradox is often treated primarily as a semantic puzzle. However, in “Sect. 1” I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Conservativeness, Stability, and Abstraction.Roy T. Cook - 2012 - British Journal for the Philosophy of Science 63 (3):673-696.
    One of the main problems plaguing neo-logicism is the Bad Company challenge: the need for a well-motivated account of which abstraction principles provide legitimate definitions of mathematical concepts. In this article a solution to the Bad Company challenge is provided, based on the idea that definitions ought to be conservative. Although the standard formulation of conservativeness is not sufficient for acceptability, since there are conservative but pairwise incompatible abstraction principles, a stronger conservativeness condition is sufficient: that the class of acceptable (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • logicism, intuitionism, and formalism - What has become of them?Sten Lindstr©œm, Erik Palmgren, Krister Segerberg & Viggo Stoltenberg-Hansen (eds.) - 2008 - Berlin, Germany: Springer.
    The period in the foundations of mathematics that started in 1879 with the publication of Frege's Begriffsschrift and ended in 1931 with Gödel's Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert's formalist and proof-theoretic programme. In this period, there were also lively exchanges between the various schools culminating in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical constants.John MacFarlane - 2008 - Mind.
    Logic is usually thought to concern itself only with features that sentences and arguments possess in virtue of their logical structures or forms. The logical form of a sentence or argument is determined by its syntactic or semantic structure and by the placement of certain expressions called “logical constants.”[1] Thus, for example, the sentences Every boy loves some girl. and Some boy loves every girl. are thought to differ in logical form, even though they share a common syntactic and semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Fregean abstraction, referential indeterminacy and the logical foundations of arithmetic.Matthias Schirn - 2003 - Erkenntnis 59 (2):203 - 232.
    In Die Grundlagen der Arithmetik, Frege attempted to introduce cardinalnumbers as logical objects by means of a second-order abstraction principlewhich is now widely known as ``Hume's Principle'' (HP): The number of Fsis identical with the number of Gs if and only if F and G are equinumerous.The attempt miscarried, because in its role as a contextual definition HP fails tofix uniquely the reference of the cardinality operator ``the number of Fs''. Thisproblem of referential indeterminacy is usually called ``the Julius Caesar (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Bad company generalized.Gabriel Uzquiano - 2009 - Synthese 170 (3):331 - 347.
    The paper is concerned with the bad company problem as an instance of a more general difficulty in the philosophy of mathematics. The paper focuses on the prospects of stability as a necessary condition on acceptability. However, the conclusion of the paper is largely negative. As a solution to the bad company problem, stability would undermine the prospects of a neo-Fregean foundation for set theory, and, as a solution to the more general difficulty, it would impose an unreasonable constraint on (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Neo-fregeanism and quantifier variance.Theodore Sider - 2007 - Aristotelian Society Supplementary Volume 81 (1):201–232.
    NeoFregeanism is an intriguing but elusive philosophy of mathematical existence. At crucial points, it goes cryptic and metaphorical. I want to put forward an interpretation of neoFregeanism—perhaps not one that actual neoFregeans will embrace—that makes sense of much of what they say. NeoFregeans should embrace quantifier variance.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Plurals.Agustín Rayo - 2007 - Philosophy Compass 2 (3):411–427.
    Forthcoming in Philosophical Compass. I explain why plural quantifiers and predicates have been thought to be philosophically significant.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, and (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Bad company tamed.Øystein Linnebo - 2009 - Synthese 170 (3):371 - 391.
    The neo-Fregean project of basing mathematics on abstraction principles faces “the bad company problem,” namely that a great variety of unacceptable abstraction principles are mixed in among the acceptable ones. In this paper I propose a new solution to the problem, based on the idea that individuation must take the form of a well-founded process. A surprising aspect of this solution is that every form of abstraction on concepts is permissible and that paradox is instead avoided by restricting what concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. New York, NY: Routledge.
    Download  
     
    Export citation  
     
    Bookmark  
  • Composition as Abstraction.Jeffrey Sanford Russell - 2017 - Journal of Philosophy 114 (9):453-470.
    The existence of mereological sums can be derived from an abstraction principle in a way analogous to numbers. I draw lessons for the thesis that “composition is innocent” from neo-Fregeanism in the philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mending the Master: JOHN P. BURGESS, Fixing Frege. Princeton, N. J.: Princeton University Press, 2005. ISBN 0-691-12231-8. Pp. xii + 257. [REVIEW]O. Linnebo - 2006 - Philosophia Mathematica 14 (3):338-400.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Specifying Truth-Conditions.Agustín Rayo - 2008 - Philosophical Review 117 (3):385-443.
    This essay is a study of ontological commitment, focused on the special case of arithmetical discourse. It tries to get clear about what would be involved in a defense of the claim that arithmetical assertions are ontologically innocent and about why ontological innocence matters. The essay proceeds by questioning traditional assumptions about the connection between the objects that are used to specify the truth-conditions of a sentence, on the one hand, and the objects whose existence is required in order for (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Introduction.Øystein Linnebo - 2009 - Synthese 170 (3):321-329.
    Neo-Fregean logicism seeks to base mathematics on abstraction principles. But the acceptable abstraction principles are surrounded by unacceptable ones. This is the "bad company problem." In this introduction I first provide a brief historical overview of the problem. Then I outline the main responses that are currently being debated. In the course of doing so I provide summaries of the contributions to this special issue.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Nominalism, Trivialism, Logicism.Agustín Rayo - 2015 - Philosophia Mathematica 23 (1):nku013.
    This paper extracts some of the main theses in the philosophy of mathematics from my book, The Construction of Logical Space. I show that there are important limits to the availability of nominalistic paraphrase functions for mathematical languages, and suggest a way around the problem by developing a method for specifying nominalistic contents without corresponding nominalistic paraphrases. Although much of the material in this paper is drawn from the book — and from an earlier paper — I hope the present (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Company Kept by Cut Abstraction (and its Relatives).S. Shapiro - 2011 - Philosophia Mathematica 19 (2):107-138.
    This article concerns the ongoing neo-logicist program in the philosophy of mathematics. The enterprise began life, in something close to its present form, with Crispin Wright’s seminal [1983]. It was bolstered when Bob Hale [1987] joined the fray on Wright’s behalf and it continues through many extensions, objections, and replies to objections . The overall plan is to develop branches of established mathematics using abstraction principles in the form: Formula where a and b are variables of a given type , (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Success by default?Augustín Rayo - 2003 - Philosophia Mathematica 11 (3):305-322.
    I argue that Neo-Fregean accounts of arithmetical language and arithmetical knowledge tacitly rely on a thesis I call [Success by Default]—the thesis that, in the absence of reasons to the contrary, we are justified in thinking that certain stipulations are successful. Since Neo-Fregeans have yet to supply an adequate defense of [Success by Default], I conclude that there is an important gap in Neo-Fregean accounts of arithmetical language and knowledge. I end the paper by offering a naturalistic remedy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Abstraction without exceptions.Luca Zanetti - 2021 - Philosophical Studies 178 (10):3197-3216.
    Wright claims that “the epistemology of good abstraction principles should be assimilated to that of basic principles of logical inference”. In this paper I follow Wright’s recommendation, but I consider a different epistemology of logic, namely anti-exceptionalism. Anti-exceptionalism’s main contention is that logic is not a priori, and that the choice between rival logics should be based on abductive criteria such as simplicity, adequacy to the data, strength, fruitfulness, and consistency. This paper’s goal is to lay down the foundations for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proceeding in Abstraction. From Concepts to Types and the recent perspective on Information.Giuseppe Primiero - 2009 - History and Philosophy of Logic 30 (3):257-282.
    This article presents an historical and conceptual overview on different approaches to logical abstraction. Two main trends concerning abstraction in the history of logic are highlighted, starting from the logical notions of concept and function. This analysis strictly relates to the philosophical discussion on the nature of abstract objects. I develop this issue further with respect to the procedure of abstraction involved by (typed) λ-systems, focusing on the crucial change about meaning and predicability. In particular, the analysis of the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On specifying truth-conditions.Jason M. Byron - manuscript
    I develop a technique for specifying truth-conditions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hume’s Big Brother: counting concepts and the bad company objection.Roy T. Cook - 2009 - Synthese 170 (3):349 - 369.
    A number of formal constraints on acceptable abstraction principles have been proposed, including conservativeness and irenicity. Hume’s Principle, of course, satisfies these constraints. Here, variants of Hume’s Principle that allow us to count concepts instead of objects are examined. It is argued that, prima facie, these principles ought to be no more problematic than HP itself. But, as is shown here, these principles only enjoy the formal properties that have been suggested as indicative of acceptability if certain constraints on the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)The Troubled History of Abstraction.Ignacio Angelelli - 2005 - History of Philosophy & Logical Analysis 8 (1):157-175.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstraction and Four Kinds of Invariance.Roy T. Cook - 2017 - Philosophia Mathematica 25 (1):3–25.
    Fine and Antonelli introduce two generalizations of permutation invariance — internal invariance and simple/double invariance respectively. After sketching reasons why a solution to the Bad Company problem might require that abstraction principles be invariant in one or both senses, I identify the most fine-grained abstraction principle that is invariant in each sense. Hume’s Principle is the most fine-grained abstraction principle invariant in both senses. I conclude by suggesting that this partially explains the success of Hume’s Principle, and the comparative lack (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Empirically Grounded Philosophical Theorizing.O. Bueno & S. A. Shalkowski - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege’s Logicism and the Neo-Fregean Project.Matthias Schirn - 2014 - Axiomathes 24 (2):207-243.
    Neo-logicism is, not least in the light of Frege’s logicist programme, an important topic in the current philosophy of mathematics. In this essay, I critically discuss a number of issues that I consider to be relevant for both Frege’s logicism and neo-logicism. I begin with a brief introduction into Wright’s neo-Fregean project and mention the main objections that he faces. In Sect. 2, I discuss the Julius Caesar problem and its possible Fregean and neo-Fregean solution. In Sect. 3, I raise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Linnebo's Abstractionism and the Bad Company Problem.J. P. Studd - 2023 - Theoria 89 (3):366-392.
    In Thin Objects: An Abstractionist Account, Linnebo offers what he describes as a “simple and definitive” solution to the bad company problem facing abstractionist accounts of mathematics. “Bad” abstraction principles can be rendered “good” by taking abstraction to have a predicative character. But the resulting predicative axioms are too weak to recover substantial portions of mathematics. Linnebo pursues two quite different strategies to overcome this weakness in the case of set theory and arithmetic. I argue that neither infinitely iterated abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reference for neo-Fregeans.David E. Taylor - 2020 - Synthese 198 (12):11505-11536.
    Neo-Fregeanism is a family of positions in the philosophy of mathematics that combines a certain type of platonism about mathematical abstracta with a certain type of logicism about the foundations and epistemology of mathematics. This paper addresses the following question: what sort of theory of reference can/should NF be committed to? The theory of reference I propose for NF comes in two parts. First, an alethic account of referential success: the fact that a term ‘a’ succeeds in referring to something (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A general theory of abstraction operators.Neil Tennant - 2004 - Philosophical Quarterly 54 (214):105-133.
    I present a general theory of abstraction operators which treats them as variable-binding term- forming operators, and provides a reasonably uniform treatment for definite descriptions, set abstracts, natural number abstraction, and real number abstraction. This minimizing, extensional and relational theory reveals a striking similarity between definite descriptions and set abstracts, and provides a clear rationale for the claim that there is a logic of sets (which is ontologically non- committal). The theory also treats both natural and real numbers as answering (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Frege's correlation.AgustÍn Rayo - 2004 - Analysis 64 (2):119-122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Categories for the Neologicist.Shay Allen Logan - 2017 - Philosophia Mathematica 25 (1):26-44.
    Abstraction principles provide implicit definitions of mathematical objects. In this paper, an abstraction principle defining categories is proposed. It is unsatisfiable and inconsistent in the expected ways. Two restricted versions of the principle which are consistent are presented.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Hume’s Principle analytic?Eamon Darnell & Aaron Thomas-Bolduc - 2018 - Synthese 198 (1):169-185.
    The question of the analyticity of Hume’s Principle (HP) is central to the neo-logicist project. We take on this question with respect to Frege’s definition of analyticity, which entails that a sentence cannot be analytic if it can be consistently denied within the sphere of a special science. We show that HP can be denied within non-standard analysis and argue that if HP is taken to depend on Frege’s definition of number, it isn’t analytic, and if HP is taken to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paolo Mancosu.*Abstraction and Infinity. [REVIEW]Roy T. Cook & Michael Calasso - 2019 - Philosophia Mathematica 27 (1):125-152.
    MancosuPaolo.* *ion and Infinity. Oxford University Press, 2016. ISBN: 978-0-19-872462-9. Pp. viii + 222.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logicism and Neologicism.Neil Tennant - 2013 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Life on the Ship of Neurath: Mathematics in the Philosophy of Mathematics.Stewart Shapiro - 2012 - Croatian Journal of Philosophy 26 (2):11--27.
    Some central philosophical issues concern the use of mathematics in putatively non-mathematical endeavors. One such endeavor, of course, is philosophy, and the philosophy of mathematics is a key instance of that. The present article provides an idiosyncratic survey of the use of mathematical results to provide support or counter-support to various philosophical programs concerning the foundations of mathematics.
    Download  
     
    Export citation  
     
    Bookmark