Switch to: References

Add citations

You must login to add citations.
  1. Cauchy’s Infinitesimals, His Sum Theorem, and Foundational Paradigms.Tiziana Bascelli, Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, David M. Schaps & David Sherry - 2018 - Foundations of Science 23 (2):267-296.
    Cauchy's sum theorem is a prototype of what is today a basic result on the convergence of a series of functions in undergraduate analysis. We seek to interpret Cauchy’s proof, and discuss the related epistemological questions involved in comparing distinct interpretive paradigms. Cauchy’s proof is often interpreted in the modern framework of a Weierstrassian paradigm. We analyze Cauchy’s proof closely and show that it finds closer proxies in a different modern framework.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting the Infinitesimal Mathematics of Leibniz and Euler.Jacques Bair, Piotr Błaszczyk, Robert Ely, Valérie Henry, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Semen S. Kutateladze, Thomas McGaffey, Patrick Reeder, David M. Schaps, David Sherry & Steven Shnider - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):195-238.
    We apply Benacerraf’s distinction between mathematical ontology and mathematical practice to examine contrasting interpretations of infinitesimal mathematics of the seventeenth and eighteenth century, in the work of Bos, Ferraro, Laugwitz, and others. We detect Weierstrass’s ghost behind some of the received historiography on Euler’s infinitesimal mathematics, as when Ferraro proposes to understand Euler in terms of a Weierstrassian notion of limit and Fraser declares classical analysis to be a “primary point of reference for understanding the eighteenth-century theories.” Meanwhile, scholars like (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Carnap’s early metatheory: scope and limits.Georg Schiemer, Richard Zach & Erich Reck - 2017 - Synthese 194 (1):33-65.
    In Untersuchungen zur allgemeinen Axiomatik and Abriss der Logistik, Carnap attempted to formulate the metatheory of axiomatic theories within a single, fully interpreted type-theoretic framework and to investigate a number of meta-logical notions in it, such as those of model, consequence, consistency, completeness, and decidability. These attempts were largely unsuccessful, also in his own considered judgment. A detailed assessment of Carnap’s attempt shows, nevertheless, that his approach is much less confused and hopeless than it has often been made out to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Fraenkel's axiom of restriction: Axiom choice, intended models and categoricity.Georg Schiemer - 2010 - In Benedikt Löwe & Thomas Müller (eds.), PhiMSAMP: philosophy of mathematics: sociological aspsects and mathematical practice. London: College Publications. pp. 307{340.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leśniewski's Systems of Logic and Foundations of Mathematics.Rafal Urbaniak - 2013 - Cham, Switzerland: Springer.
    With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great ...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Alfred Tarski: philosophy of language and logic.Douglas Patterson - 2012 - New York: Palgrave-Macmillan.
    This study looks to the work of Tarski's mentors Stanislaw Lesniewski and Tadeusz Kotarbinski, and reconsiders all of the major issues in Tarski scholarship in light of the conception of Intuitionistic Formalism developed: semantics, truth, paradox, logical consequence.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Carnap, completeness, and categoricity:The gabelbarkeitssatz OF 1928. [REVIEW]S. Awodey & A. W. Carus - 2001 - Erkenntnis 54 (2):145-172.
    In 1929 Carnap gave a paper in Prague on Investigations in General Axiomatics; a briefsummary was published soon after. Its subject lookssomething like early model theory, and the mainresult, called the Gabelbarkeitssatz, appears toclaim that a consistent set of axioms is complete justif it is categorical. This of course casts doubt onthe entire project. Though there is no furthermention of this theorem in Carnap''s publishedwritings, his Nachlass includes a largetypescript on the subject, Investigations inGeneral Axiomatics. We examine this work here,showing (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Completeness: From Husserl to Carnap.Víctor Aranda - 2022 - Logica Universalis 16 (1):57-83.
    In his Doppelvortrag, Edmund Husserl introduced two concepts of “definiteness” which have been interpreted as a vindication of his role in the history of completeness. Some commentators defended that the meaning of these notions should be understood as categoricity, while other scholars believed that it is closer to syntactic completeness. A detailed study of the early twentieth-century axiomatics and Husserl’s Doppelvortrag shows, however, that many concepts of completeness were conflated as equivalent. Although “absolute definiteness” was principally an attempt to characterize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Three Letters on the Foundations of Mathematics by Frank Plumpton Ramsey†.Paolo Mancosu - forthcoming - Philosophia Mathematica.
    Summary This article presents three hitherto unpublished letters by Frank Plumpton Ramsey on the foundations of mathematics with commentary. One of the letters was sent to Abraham Fraenkel and the other two letters to Heinrich Behmann. The transcription of the letters is preceded by an account that details the extent of Ramsey's known contacts with mathematical logicians on the Continent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reasons and Causes in Psychiatry: Ideas from Donald Davidson’s Work.Elisabetta Lalumera - 2018 - In Annalisa Coliva, Paolo Leonardi & Sebastiano Moruzzi (eds.), Eva Picardi on Language, Analysis and History. Londra, Regno Unito: Palgrave. pp. 281-296.
    Though the divide between reason-based and causal-explanatory approaches in psychiatry and psychopathology is old and deeply rooted, current trends involving multi-factorial explanatory models and evidence-based approaches to interpersonal psychotherapy, show that it has already been implicitly bridged. These trends require a philosophical reconsideration of how reasons can be causes. This paper contributes to that trajectory by arguing that Donald Davidson’s classic paradigm of 1963 is still a valid option.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Theoriegeleitete Bestimmung von Objektmengen und Beobachtungsintervallen am Beispiel des Halleyschen Kometen.Ulrich Gähde - 2012 - Philosophia Naturalis 49 (2):207-224.
    The starting point of the following considerations is a case study concerning the discovery of Halley's comet and the theoretical description of its path. It is shown that the set of objects involved in that system and the time interval during which their paths are observed are determined in a theory dependent way – thereby making use of the very theory later used for that system's theoretical description. Metatheoretical consequences this fact has with respect to the structuralist view of empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Carnap’s Early Semantics.Georg Schiemer - 2013 - Erkenntnis 78 (3):487-522.
    This paper concerns Carnap’s early contributions to formal semantics in his work on general axiomatics between 1928 and 1936. Its main focus is on whether he held a variable domain conception of models. I argue that interpreting Carnap’s account in terms of a fixed domain approach fails to describe his premodern understanding of formal models. By drawing attention to the second part of Carnap’s unpublished manuscript Untersuchungen zur allgemeinen Axiomatik, an alternative interpretation of the notions ‘model’, ‘model extension’ and ‘submodel’ (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The significance of a non-reductionist ontology for the discipline of mathematics: A historical and systematic analysis. [REVIEW]D. F. M. Strauss - 2010 - Axiomathes 20 (1):19-52.
    A Christian approach to scholarship, directed by the central biblical motive of creation, fall and redemption and guided by the theoretical idea that God subjected all of creation to His Law-Word, delimiting and determining the cohering diversity we experience within reality, in principle safe-guards those in the grip of this ultimate commitment and theoretical orientation from absolutizing or deifying anything within creation. In this article my over-all approach is focused on the one-sided legacy of mathematics, starting with Pythagorean arithmeticism (“everything (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards transfinite type theory: rereading Tarski’s Wahrheitsbegriff.Iris Loeb - 2014 - Synthese 191 (10):2281-2299.
    In his famous paper Der Wahrheitsbegriff in den formalisierten Sprachen (Polish edition: Nakładem/Prace Towarzystwa Naukowego Warszawskiego, wydzial, III, 1933), Alfred Tarski constructs a materially adequate and formally correct definition of the term “true sentence” for certain kinds of formalised languages. In the case of other formalised languages, he shows that such a construction is impossible but that the term “true sentence” can nevertheless be consistently postulated. In the Postscript that Tarski added to a later version of this paper (Studia Philosophica, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Cauchy-Dirac Delta Function.Mikhail G. Katz & David Tall - 2013 - Foundations of Science 18 (1):107-123.
    The Dirac δ function has solid roots in nineteenth century work in Fourier analysis and singular integrals by Cauchy and others, anticipating Dirac’s discovery by over a century, and illuminating the nature of Cauchy’s infinitesimals and his infinitesimal definition of δ.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Alfred Tarski and the "Concept of Truth in Formalized Languages": A Running Commentary with Consideration of the Polish Original and the German Translation.Monika Gruber - 2016 - Cham, Switzerland: Springer Verlag.
    This book provides a detailed commentary on the classic monograph by Alfred Tarski, and offers a reinterpretation and retranslation of the work using the original Polish text and the English and German translations. In the original work, Tarski presents a method for constructing definitions of truth for classical, quantificational formal languages. Furthermore, using the defined notion of truth, he demonstrates that it is possible to provide intuitively adequate definitions of the semantic notions of definability and denotation and that the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • When series go in indefinitum, ad infinitum and in infinitum concepts of infinity in Kant’s antinomy of pure reason.Silvia De Bianchi - 2015 - Synthese 192 (8):2395-2412.
    In the section of the Antinomy of pure Reason Kant presents three notions of infinity. By investigating these concepts of infinity, this paper highlights important ‘building blocks’ of the structure of the mathematical antinomies, such as the ability of reason of producing ascending and descending series, as well as the notions of given and givable series. These structural features are discussed in order to clarify Ernst Zermelo’s reading of Kant’s antinomy, according to which the latter is deeply rooted in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations