Switch to: References

Add citations

You must login to add citations.
  1. The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • Foundational implications of the inner model hypothesis.Tatiana Arrigoni & Sy-David Friedman - 2012 - Annals of Pure and Applied Logic 163 (10):1360-1366.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Are Large Cardinal Axioms Restrictive?Neil Barton - 2023 - Philosophia Mathematica 31 (3):372-407.
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can still play many of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Universism and extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favour of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Inner-Model Reflection Principles.Neil Barton, Andrés Eduardo Caicedo, Gunter Fuchs, Joel David Hamkins, Jonas Reitz & Ralf Schindler - 2020 - Studia Logica 108 (3):573-595.
    We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Forcing and the Universe of Sets: Must We Lose Insight?Neil Barton - 2020 - Journal of Philosophical Logic 49 (4):575-612.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forcing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Set-theoretic geology.Gunter Fuchs, Joel David Hamkins & Jonas Reitz - 2015 - Annals of Pure and Applied Logic 166 (4):464-501.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The internal consistency of Easton’s theorem.Sy-David Friedman & Pavel Ondrejovič - 2008 - Annals of Pure and Applied Logic 156 (2):259-269.
    An Easton function is a monotone function C from infinite regular cardinals to cardinals such that C has cofinality greater than α for each infinite regular cardinal α. Easton showed that assuming GCH, if C is a definable Easton function then in some cofinality-preserving extension, C=2α for all infinite regular cardinals α. Using “generic modification”, we show that over the ground model L, models witnessing Easton’s theorem can be obtained as inner models of L[0#], for Easton functions which are L-definable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Internal Consistency and Global Co-stationarity of the Ground Model.Natasha Dobrinen & Sy-David Friedman - 2008 - Journal of Symbolic Logic 73 (2):512 - 521.
    Global co-stationarity of the ground model from an N₂-c.c, forcing which adds a new subset of N₁ is internally consistent relative to an ω₁-Erdös hyperstrong cardinal and a sufficiently large measurable above.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Universism and Extensions of V.Carolin Antos, Neil Barton & Sy-David Friedman - 2021 - Review of Symbolic Logic 14 (1):112-154.
    A central area of current philosophical debate in the foundations of mathematics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often model-theoretic constructions that add sets to models are cited as evidence in favor of the latter. This paper informs this debate by developing a way for a Universist to interpret talk that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Maximality Principles in the Hyperuniverse Programme.Sy-David Friedman & Claudio Ternullo - 2020 - Foundations of Science 28 (1):287-305.
    In recent years, one of the main thrusts of set-theoretic research has been the investigation of maximality principles for V, the universe of sets. The Hyperuniverse Programme (HP) has formulated several maximality principles, which express the maximality of V both in height and width. The paper provides an overview of the principles which have been investigated so far in the programme, as well as of the logical and model-theoretic tools which are needed to formulate them mathematically, and also briefly shows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why is Cantor’s Absolute Inherently Inaccessible?Stathis Livadas - 2020 - Axiomathes 30 (5):549-576.
    In this article, as implied by the title, I intend to argue for the unattainability of Cantor’s Absolute at least in terms of the proof-theoretical means of set-theory and of the theory of large cardinals. For this reason a significant part of the article is a critical review of the progress of set-theory and of mathematical foundations toward resolving problems which to the one or the other degree are associated with the concept of infinity especially the one beyond that of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Internal consistency for embedding complexity.Sy-David Friedman & Katherine Thompson - 2008 - Journal of Symbolic Logic 73 (3):831-844.
    In a previous paper with M. Džamonja, class forcings were given which fixed the complexity (a universality covering number) for certain types of structures of size λ together with the value of 2λ for every regular λ. As part of a programme for examining when such global results can be true in an inner model, we build generics for these class forcings.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On strong forms of reflection in set theory.Sy-David Friedman & Radek Honzik - 2016 - Mathematical Logic Quarterly 62 (1-2):52-58.
    In this paper we review the most common forms of reflection and introduce a new form which we call sharp‐generated reflection. We argue that sharp‐generated reflection is the strongest form of reflection which can be regarded as a natural generalization of the Lévy reflection theorem. As an application we formulate the principle sharp‐maximality with the corresponding hypothesis. The statement is an analogue of the (Inner Model Hypothesis, introduced in ) which is compatible with the existence of large cardinals.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Consistency Strength of the Inner Model Hypothesis.Sy-David Friedman, Philip Welch & W. Hugh Woodin - 2008 - Journal of Symbolic Logic 73 (2):391 - 400.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • (1 other version)Maximality Principles in the Hyperuniverse Programme.Sy-David Friedman & Claudio Ternullo - 2023 - Foundations of Science 28 (1):287-305.
    In recent years, one of the main thrusts of set-theoretic research has been the investigation of maximality principles for V, the universe of sets. The Hyperuniverse Programme (HP) has formulated several maximality principles, which express the maximality of V both in height and width. The paper provides an overview of the principles which have been investigated so far in the programme, as well as of the logical and model-theoretic tools which are needed to formulate them mathematically, and also briefly shows (...)
    Download  
     
    Export citation  
     
    Bookmark