Switch to: References

Add citations

You must login to add citations.
  1. A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the problem can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plato's Problem: An Introduction to Mathematical Platonism.Marco Panza & Andrea Sereni - 2013 - New York: Palgrave-Macmillan. Edited by Andrea Sereni & Marco Panza.
    What is mathematics about? And if it is about some sort of mathematical reality, how can we have access to it? This is the problem raised by Plato, which still today is the subject of lively philosophical disputes. This book traces the history of the problem, from its origins to its contemporary treatment. It discusses the answers given by Aristotle, Proclus and Kant, through Frege's and Russell's versions of logicism, Hilbert's formalism, Gödel's platonism, up to the the current debate on (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • How to Learn the Natural Numbers: Inductive Inference and the Acquisition of Number Concepts.Eric Margolis & Stephen Laurence - 2008 - Cognition 106 (2):924-939.
    Theories of number concepts often suppose that the natural numbers are acquired as children learn to count and as they draw an induction based on their interpretation of the first few count words. In a bold critique of this general approach, Rips, Asmuth, Bloomfield [Rips, L., Asmuth, J. & Bloomfield, A.. Giving the boot to the bootstrap: How not to learn the natural numbers. Cognition, 101, B51–B60.] argue that such an inductive inference is consistent with a representational system that clearly (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Foundations of Mathematics: Metaphysics, Epistemology, Structure.Stewart Shapiro - 2004 - Philosophical Quarterly 54 (214):16 - 37.
    Since virtually every mathematical theory can be interpreted in set theory, the latter is a foundation for mathematics. Whether set theory, as opposed to any of its rivals, is the right foundation for mathematics depends on what a foundation is for. One purpose is philosophical, to provide the metaphysical basis for mathematics. Another is epistemic, to provide the basis of all mathematical knowledge. Another is to serve mathematics, by lending insight into the various fields. Another is to provide an arena (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Arguing on the Toulmin Model: New Essays in Argument Analysis and Evaluation.David Hitchcock & Bart Verheij (eds.) - 2006 - Dordrecht, Netherland: Springer.
    In The Uses of Argument, Stephen Toulmin proposed a model for the layout of arguments: claim, data, warrant, qualifier, rebuttal, backing. Since then, Toulmin’s model has been appropriated, adapted and extended by researchers in speech communications, philosophy and artificial intelligence. This book assembles the best contemporary reflection in these fields, extending or challenging Toulmin’s ideas in ways that make fresh contributions to the theory of analysing and evaluating arguments.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Thermodynamic foundations of physical chemistry: reversible processes and thermal equilibrium into the history.Raffaele Pisano, Abdelkader Anakkar, Emilio Marco Pellegrino & Maxime Nagels - 2018 - Foundations of Chemistry 21 (3):297-323.
    In the history of science, the birth of classical chemistry and thermodynamics produced an anomaly within Newtonian mechanical paradigm: force and acceleration were no longer citizens of new cited sciences. Scholars tried to reintroduce them within mechanistic approaches, as the case of the kinetic gas theory. Nevertheless, Thermodynamics, in general, and its Second Law, in particular, gradually affirmed their role of dominant not-reducible cognitive paradigms for various scientific disciplines: more than twenty formulations of Second Law—a sort of indisputable intellectual wealth—are (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Knowledge and Naturalism.Fabio Sterpetti - 2019 - Philosophia 47 (1):225-247.
    How should one conceive of the method of mathematics, if one takes a naturalist stance? Mathematical knowledge is regarded as the paradigm of certain knowledge, since mathematics is based on the axiomatic method. Natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some naturalists try to naturalize mathematics relying on Darwinism. But several difficulties arise when one tries to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to naturalize (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematics and Experience.Carlo Cellucci - forthcoming - Foundations of Science:1-15.
    The question of whether mathematics depends on experience, including experience of the external world, is problematic because, while it is clear that natural sciences depend on experience, it is not clear that mathematics depends on experience. Indeed, several mathematicians and philosophers think that mathematics does not depend on experience, and this is also the view of mainstream philosophy of mathematics. However, this view has had a deleterious effect on the philosophy of mathematics. This article argues that, in fact, the view (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Uses of Argument in Mathematics.Andrew Aberdein - 2005 - Argumentation 19 (3):287-301.
    Stephen Toulmin once observed that ”it has never been customary for philosophers to pay much attention to the rhetoric of mathematical debate’ [Toulmin et al., 1979, An Introduction to Reasoning, Macmillan, London, p. 89]. Might the application of Toulmin’s layout of arguments to mathematics remedy this oversight? Toulmin’s critics fault the layout as requiring so much abstraction as to permit incompatible reconstructions. Mathematical proofs may indeed be represented by fundamentally distinct layouts. However, cases of genuine conflict characteristically reflect an underlying (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Electromagnetic Theory: Some Philosophical and Mathematical Problems of the Wave and Helmholtz Equations.Vicente Aboites - 2022 - Open Journal of Philosophy 12 (3):489-503.
    In this article some intriguing aspects of electromagnetic theory and its relation to mathematics and reality are discussed, in particular those related to the suppositions needed to obtain the wave equations from Maxwell equations and from there Helmholtz equation. The following questions are discussed. How is that equations obtained with so many irreal or fictitious assumptions may provide a description that is in a high degree verifiable? Must everything that is possible to deduce from a theoretical mathematical model occur in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Wittgenstein and the Real Numbers.Daesuk Han - 2010 - History and Philosophy of Logic 31 (3):219-245.
    When it comes to Wittgenstein's philosophy of mathematics, even sympathetic admirers are cowed into submission by the many criticisms of influential authors in that field. They say something to the effect that Wittgenstein does not know enough about or have enough respect for mathematics, to take him as a serious philosopher of mathematics. They claim to catch Wittgenstein pooh-poohing the modern set-theoretic extensional conception of a real number. This article, however, will show that Wittgenstein's criticism is well grounded. A real (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • .[author unknown] - unknown
    Download  
     
    Export citation  
     
    Bookmark