Switch to: References

Add citations

You must login to add citations.
  1. Stationary Reflection and the Failure of the Sch.Omer Ben-Neria, Yair Hayut & Spencer Unger - 2024 - Journal of Symbolic Logic 89 (1):1-26.
    In this paper we prove that from large cardinals it is consistent that there is a singular strong limit cardinal $\nu $ such that the singular cardinal hypothesis fails at $\nu $ and every collection of fewer than $\operatorname {\mathrm {cf}}(\nu )$ stationary subsets of $\nu ^{+}$ reflects simultaneously. For $\operatorname {\mathrm {cf}}(\nu )> \omega $, this situation was not previously known to be consistent. Using different methods, we reduce the upper bound on the consistency strength of this situation for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Cohen and Prikry Forcing Notions.Tom Benhamou & Moti Gitik - 2024 - Journal of Symbolic Logic 89 (2):858-904.
    Abstract(1)We show that it is possible to add $\kappa ^+$ -Cohen subsets to $\kappa $ with a Prikry forcing over $\kappa $. This answers a question from [9].(2)A strengthening of non-Galvin property is introduced. It is shown to be consistent using a single measurable cardinal which improves a previous result by S. Garti, S. Shelah, and the first author [5].(3)A situation with Extender-based Prikry forcings is examined. This relates to a question of H. Woodin.
    Download  
     
    Export citation  
     
    Bookmark  
  • Strongly compact cardinals and the continuum function.Arthur W. Apter, Stamatis Dimopoulos & Toshimichi Usuba - 2021 - Annals of Pure and Applied Logic 172 (9):103013.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing the Least Measurable to Violate GCH.Arthur W. Apter - 1999 - Mathematical Logic Quarterly 45 (4):551-560.
    Starting with a model for “GCH + k is k+ supercompact”, we force and construct a model for “k is the least measurable cardinal + 2k = K+”. This model has the property that forcing over it with Add preserves the fact k is the least measurable cardinal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Indestructibility and destructible measurable cardinals.Arthur W. Apter - 2016 - Archive for Mathematical Logic 55 (1-2):3-18.
    Say that κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}’s measurability is destructible if there exists a κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\kappa}$$\end{document}. It then follows that A1={δ<κ∣δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{1} = \{\delta < \kappa \mid \delta}$$\end{document} is measurable, δ is not a limit of measurable cardinals, δ is not δ+ strongly compact, and δ’s measurability is destructible when forcing with partial orderings having rank below λδ} is unbounded (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Easton’s theorem and large cardinals.Sy-David Friedman & Radek Honzik - 2008 - Annals of Pure and Applied Logic 154 (3):191-208.
    The continuum function αmaps to2α on regular cardinals is known to have great freedom. Let us say that F is an Easton function iff for regular cardinals α and β, image and α<β→F≤F. The classic example of an Easton function is the continuum function αmaps to2α on regular cardinals. If GCH holds then any Easton function is the continuum function on regular cardinals of some cofinality-preserving extension V[G]; we say that F is realised in V[G]. However if we also wish (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Global singularization and the failure of SCH.Radek Honzik - 2010 - Annals of Pure and Applied Logic 161 (7):895-915.
    We say that κ is μ-hypermeasurable for a cardinal μ≥κ+ if there is an embedding j:V→M with critical point κ such that HV is included in M and j>μ. Such a j is called a witnessing embedding.Building on the results in [7], we will show that if V satisfies GCH and F is an Easton function from the regular cardinals into cardinals satisfying some mild restrictions, then there exists a cardinal-preserving forcing extension V* where F is realised on all V-regular (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Two Upper Bounds on Consistency Strength of $negsquare{aleph{omega}}$ and Stationary Set Reflection at Two Successive $aleph_{n}$.Martin Zeman - 2017 - Notre Dame Journal of Formal Logic 58 (3):409-432.
    We give modest upper bounds for consistency strengths for two well-studied combinatorial principles. These bounds range at the level of subcompact cardinals, which is significantly below a κ+-supercompact cardinal. All previously known upper bounds on these principles ranged at the level of some degree of supercompactness. We show that by using any of the standard modified Prikry forcings it is possible to turn a measurable subcompact cardinal into ℵω and make the principle □ℵω,<ω fail in the generic extension. We also (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Changing cardinal characteristics without changing ω-sequences or cofinalities.Heike Mildenberger & Saharon Shelah - 2000 - Annals of Pure and Applied Logic 106 (1-3):207-261.
    We show: There are pairs of universes V1V2 and there is a notion of forcing PV1 such that the change mentioned in the title occurs when going from V1[G] to V2[G] for a P-generic filter G over V2. We use forcing iterations with partial memories. Moreover, we implement highly transitive automorphism groups into the forcing orders.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The secret life of μ-clubs.Pierre Matet - 2022 - Annals of Pure and Applied Logic 173 (9):103162.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Singular cardinals and the pcf theory.Thomas Jech - 1995 - Bulletin of Symbolic Logic 1 (4):408-424.
    §1. Introduction. Among the most remarkable discoveries in set theory in the last quarter century is the rich structure of the arithmetic of singular cardinals, and its deep relationship to large cardinals. The problem of finding a complete set of rules describing the behavior of the continuum function 2ℵα for singular ℵα's, known as the Singular Cardinals Problem, has been attacked by many different techniques, involving forcing, large cardinals, inner models, and various combinatorial methods. The work on the singular cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Lifting Argument for the Generalized Grigorieff Forcing.Radek Honzík & Jonathan Verner - 2016 - Notre Dame Journal of Formal Logic 57 (2):221-231.
    In this short paper, we describe another class of forcing notions which preserve measurability of a large cardinal $\kappa$ from the optimal hypothesis, while adding new unbounded subsets to $\kappa$. In some ways these forcings are closer to the Cohen-type forcings—we show that they are not minimal—but, they share some properties with treelike forcings. We show that they admit fusion-type arguments which allow for a uniform lifting argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.
    A cardinal κ is tall if for every ordinal θ there is an embedding j: V → M with critical point κ such that j > θ and Mκ ⊆ M. Every strong cardinal is tall and every strongly compact cardinal is tall, but measurable cardinals are not necessarily tall. It is relatively consistent, however, that the least measurable cardinal is tall. Nevertheless, the existence of a tall cardinal is equiconsistent with the existence of a strong cardinal. Any tall cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Capturing sets of ordinals by normal ultrapowers.Miha E. Habič & Radek Honzík - 2023 - Annals of Pure and Applied Logic 174 (6):103261.
    Download  
     
    Export citation  
     
    Bookmark  
  • The strenght of the failure of the singular cardinal hypothesis.Moti Gitik - 1991 - Annals of Pure and Applied Logic 51 (3):215-240.
    We show that o = k++ is necessary for ¬SCH. Together with previous results it provides the exact strenght of ¬SCH.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (2 other versions)Possible values for 2ℵn and 2ℵω.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Possible values for 2K-and 2K.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-242.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Possible values for 2 (aleph n) and 2 (aleph omega).Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Possible values for 2< sup> and 2.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Power function on stationary classes.Moti Gitik & Carmi Merimovich - 2006 - Annals of Pure and Applied Logic 140 (1):75-103.
    We show that under certain large cardinal requirements there is a generic extension in which the power function behaves differently on different stationary classes. We achieve this by doing an Easton support iteration of the Radin on extenders forcing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indiscernible sequences for extenders, and the singular cardinal hypothesis.Moti Gitik & William J. Mitchell - 1996 - Annals of Pure and Applied Logic 82 (3):273-316.
    We prove several results giving lower bounds for the large cardinal strength of a failure of the singular cardinal hypothesis. The main result is the following theorem: Theorem. Suppose κ is a singular strong limit cardinal and 2κ λ where λ is not the successor of a cardinal of cofinality at most κ. If cf > ω then it follows that o λ, and if cf = ωthen either o λ or {α: K o α+n} is confinal in κ for (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On gaps under GCH type assumptions.Moti Gitik - 2003 - Annals of Pure and Applied Logic 119 (1-3):1-18.
    We prove equiconsistency results concerning gaps between a singular strong limit cardinal κ of cofinality 0 and its power under assumptions that 2κ=κ+δ+1 for δ<κ and some weak form of the Singular Cardinal Hypothesis below κ. Together with the previous results this basically completes the study of consistency strength of the various gaps between such κ and its power under GCH type assumptions below.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On measurable cardinals violating the continuum hypothesis.Moti Gitik - 1993 - Annals of Pure and Applied Logic 63 (3):227-240.
    Gitik, M., On measurable cardinals violating the continuum hypothesis, Annals of Pure and Applied Logic 63 227-240. It is shown that an extender used uncountably many times in an iteration is reconstructible. This together with the Weak Covering Lemma is used to show that the assumption o=κ+α is necessary for a measurable κ with 2κ=κ+α.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A model with a precipitous ideal, but no normal precipitous ideal.Moti Gitik - 2013 - Journal of Mathematical Logic 13 (1):1250008.
    Starting with a measurable cardinal κ of the Mitchell order κ++ we construct a model with a precipitous ideal on ℵ1 but without normal precipitous ideals. This answers a question by T. Jech and K. Prikry. In the constructed model there are no Q-point precipitous filters on ℵ1, i. e. those isomorphic to extensions of Cubℵ1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Club stationary reflection and other combinatorial principles at ℵ+2.Thomas Gilton & Šárka Stejskalová - 2025 - Annals of Pure and Applied Logic 176 (1):103489.
    Download  
     
    Export citation  
     
    Bookmark  
  • Eastonʼs theorem and large cardinals from the optimal hypothesis.Sy-David Friedman & Radek Honzik - 2012 - Annals of Pure and Applied Logic 163 (12):1738-1747.
    The equiconsistency of a measurable cardinal with Mitchell order o=κ++ with a measurable cardinal such that 2κ=κ++ follows from the results by W. Mitchell [13] and M. Gitik [7]. These results were later generalized to measurable cardinals with 2κ larger than κ++ .In Friedman and Honzik [5], we formulated and proved Eastonʼs theorem [4] in a large cardinal setting, using slightly stronger hypotheses than the lower bounds identified by Mitchell and Gitik , for a suitable μ, instead of the cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The failure of GCH at a degree of supercompactness.Brent Cody - 2012 - Mathematical Logic Quarterly 58 (1):83-94.
    We determine the large cardinal consistency strength of the existence of a λ-supercompact cardinal κ such that equation image fails at λ. Indeed, we show that the existence of a λ-supercompact cardinal κ such that 2λ ≥ θ is equiconsistent with the existence of a λ-supercompact cardinal that is also θ-tall. We also prove some basic facts about the large cardinal notion of tallness with closure.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Small cardinals and small Efimov spaces.Will Brian & Alan Dow - 2022 - Annals of Pure and Applied Logic 173 (1):103043.
    Download  
     
    Export citation  
     
    Bookmark   3 citations