Switch to: References

Add citations

You must login to add citations.
  1. (2 other versions)Possible values for 2ℵn and 2ℵω.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Narrow coverings of ω-ary product spaces.Randall Dougherty - 1997 - Annals of Pure and Applied Logic 88 (1):47-91.
    Results of Sierpiski and others have shown that certain finite-dimensional product sets can be written as unions of subsets, each of which is ‘narrow’ in a corresponding direction; that is, each line in that direction intersects the subset in a small set. For example, if the set ω × ω is partitioned into two pieces along the diagonal, then one piece meets every horizontal line in a finite set, and the other piece meets each vertical line in a finite set. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • μ-clubs of P(λ): Paradise in heaven.Pierre Matet - 2025 - Annals of Pure and Applied Logic 176 (1):103497.
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Possible values for 2< sup> and 2.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Changing cofinalities and collapsing cardinals in models of set theory.Miloš S. Kurilić - 2003 - Annals of Pure and Applied Logic 120 (1-3):225-236.
    If a˜cardinal κ1, regular in the ground model M, is collapsed in the extension N to a˜cardinal κ0 and its new cofinality, ρ, is less than κ0, then, under some additional assumptions, each cardinal λ>κ1 less than cc/[κ1]<κ1) is collapsed to κ0 as well. If in addition N=M[f], where f : ρ→κ1 is an unbounded mapping, then N is a˜λ=κ0-minimal extension. This and similar results are applied to generalized forcing notions of Bukovský and Namba.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Global singularization and the failure of SCH.Radek Honzik - 2010 - Annals of Pure and Applied Logic 161 (7):895-915.
    We say that κ is μ-hypermeasurable for a cardinal μ≥κ+ if there is an embedding j:V→M with critical point κ such that HV is included in M and j>μ. Such a j is called a witnessing embedding.Building on the results in [7], we will show that if V satisfies GCH and F is an Easton function from the regular cardinals into cardinals satisfying some mild restrictions, then there exists a cardinal-preserving forcing extension V* where F is realised on all V-regular (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Singular cardinals and the pcf theory.Thomas Jech - 1995 - Bulletin of Symbolic Logic 1 (4):408-424.
    §1. Introduction. Among the most remarkable discoveries in set theory in the last quarter century is the rich structure of the arithmetic of singular cardinals, and its deep relationship to large cardinals. The problem of finding a complete set of rules describing the behavior of the continuum function 2ℵα for singular ℵα's, known as the Singular Cardinals Problem, has been attacked by many different techniques, involving forcing, large cardinals, inner models, and various combinatorial methods. The work on the singular cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Possible values for 2 (aleph n) and 2 (aleph omega).Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The secret life of μ-clubs.Pierre Matet - 2022 - Annals of Pure and Applied Logic 173 (9):103162.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Possible values for 2K-and 2K.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-242.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indiscernible sequences for extenders, and the singular cardinal hypothesis.Moti Gitik & William J. Mitchell - 1996 - Annals of Pure and Applied Logic 82 (3):273-316.
    We prove several results giving lower bounds for the large cardinal strength of a failure of the singular cardinal hypothesis. The main result is the following theorem: Theorem. Suppose κ is a singular strong limit cardinal and 2κ λ where λ is not the successor of a cardinal of cofinality at most κ. If cf > ω then it follows that o λ, and if cf = ωthen either o λ or {α: K o α+n} is confinal in κ for (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On the consistency strength of the Milner–Sauer conjecture.Assaf Rinot - 2006 - Annals of Pure and Applied Logic 140 (1):110-119.
    In their paper from 1981, Milner and Sauer conjectured that for any poset P,≤, if , then P must contain an antichain of cardinality κ. The conjecture is consistent and known to follow from GCH-type assumptions. We prove that the conjecture has large cardinals consistency strength in the sense that its negation implies, for example, the existence of a measurable cardinal in an inner model. We also prove that the conjecture follows from Martin’s Maximum and holds for all singular λ (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
    The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Around accumulation points and maximal sequences of indiscernibles.Moti Gitik - 2024 - Archive for Mathematical Logic 63 (5):591-608.
    Answering a question of Mitchell (Trans Am Math Soc 329(2):507–530, 1992) we show that a limit of accumulation points can be singular in $${\mathcal {K}}$$ K. Some additional constructions are presented.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Splitting Number at Regular Cardinals.Omer Ben-Neria & Moti Gitik - 2015 - Journal of Symbolic Logic 80 (4):1348-1360.
    Letκ, λ be regular uncountable cardinals such that λ >κ+is not a successor of a singular cardinal of low cofinality. We construct a generic extension withs(κ) = λ starting from a ground model in whicho(κ) = λ and prove that assuming ¬0¶,s(κ) = λ implies thato(κ) ≥ λ in the core model.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The consistency strength of choiceless failures of SCH.Arthur W. Apter & Peter Koepke - 2010 - Journal of Symbolic Logic 75 (3):1066-1080.
    We determine exact consistency strengths for various failures of the Singular Cardinals Hypothesis (SCH) in the setting of the Zermelo-Fraenkel axiom system ZF without the Axiom of Choice (AC). By the new notion of parallel Prikry forcing that we introduce, we obtain surjective failures of SCH using only one measurable cardinal, including a surjective failure of Shelah's pcf theorem about the size of the power set of $\aleph _{\omega}$ . Using symmetric collapses to $\aleph _{\omega}$ , $\aleph _{\omega _{1}}$ , (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Piece selection and cardinal arithmetic.Pierre Matet - 2022 - Mathematical Logic Quarterly 68 (4):416-446.
    We study the effects of piece selection principles on cardinal arithmetic (Shelah style). As an application, we discuss questions of Abe and Usuba. In particular, we show that if, then (a) is not (λ, 2)‐distributive, and (b) does not hold.
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the cut and choose game.Jindřich Zapletal - 1995 - Annals of Pure and Applied Logic 76 (3):291-301.
    The cut and choose game is one of the infinitary games on a complete Boolean algebra B introduced by Jech. We prove that existence of a winning strategy for II in implies semiproperness of B. If the existence of a supercompact cardinal is consistent then so is “for every 1-distributive algebra B II has a winning strategy in ”.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Forcing axioms, supercompact cardinals, singular cardinal combinatorics.Matteo Viale - 2008 - Bulletin of Symbolic Logic 14 (1):99-113.
    The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper forcing axiom PFA (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Closure properties of measurable ultrapowers.Philipp Lücke & Sandra Müller - 2021 - Journal of Symbolic Logic 86 (2):762-784.
    We study closure properties of measurable ultrapowers with respect to Hamkin's notion of freshness and show that the extent of these properties highly depends on the combinatorial properties of the underlying model of set theory. In one direction, a result of Sakai shows that, by collapsing a strongly compact cardinal to become the double successor of a measurable cardinal, it is possible to obtain a model of set theory in which such ultrapowers possess the strongest possible closure properties. In the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On gaps under GCH type assumptions.Moti Gitik - 2003 - Annals of Pure and Applied Logic 119 (1-3):1-18.
    We prove equiconsistency results concerning gaps between a singular strong limit cardinal κ of cofinality 0 and its power under assumptions that 2κ=κ+δ+1 for δ<κ and some weak form of the Singular Cardinal Hypothesis below κ. Together with the previous results this basically completes the study of consistency strength of the various gaps between such κ and its power under GCH type assumptions below.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Cohen and Prikry Forcing Notions.Tom Benhamou & Moti Gitik - 2024 - Journal of Symbolic Logic 89 (2):858-904.
    Abstract(1)We show that it is possible to add $\kappa ^+$ -Cohen subsets to $\kappa $ with a Prikry forcing over $\kappa $. This answers a question from [9].(2)A strengthening of non-Galvin property is introduced. It is shown to be consistent using a single measurable cardinal which improves a previous result by S. Garti, S. Shelah, and the first author [5].(3)A situation with Extender-based Prikry forcings is examined. This relates to a question of H. Woodin.
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.
    Motivated by the goal of constructing a model in which there are no κ-Aronszajn trees for any regular $k>\aleph_1$, we produce a model with many singular cardinals where both the singular cardinals hypothesis and weak square fail.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strongly compact cardinals and the continuum function.Arthur W. Apter, Stamatis Dimopoulos & Toshimichi Usuba - 2021 - Annals of Pure and Applied Logic 172 (9):103013.
    Download  
     
    Export citation  
     
    Bookmark   2 citations