Switch to: References

Add citations

You must login to add citations.
  1. On the computational complexity of ethics: moral tractability for minds and machines.Jakob Stenseke - 2024 - Artificial Intelligence Review 57 (105):90.
    Why should moral philosophers, moral psychologists, and machine ethicists care about computational complexity? Debates on whether artificial intelligence (AI) can or should be used to solve problems in ethical domains have mainly been driven by what AI can or cannot do in terms of human capacities. In this paper, we tackle the problem from the other end by exploring what kind of moral machines are possible based on what computational systems can or cannot do. To do so, we analyze normative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bayesians Commit the Gambler's Fallacy.Kevin Dorst - manuscript
    The gambler’s fallacy is the tendency to expect random processes to switch more often than they actually do—for example, to think that after a string of tails, a heads is more likely. It’s often taken to be evidence for irrationality. It isn’t. Rather, it’s to be expected from a group of Bayesians who begin with causal uncertainty, and then observe unbiased data from an (in fact) statistically independent process. Although they converge toward the truth, they do so in an asymmetric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Resource Rationality.Thomas F. Icard - manuscript
    Theories of rational decision making often abstract away from computational and other resource limitations faced by real agents. An alternative approach known as resource rationality puts such matters front and center, grounding choice and decision in the rational use of finite resources. Anticipated by earlier work in economics and in computer science, this approach has recently seen rapid development and application in the cognitive sciences. Here, the theory of rationality plays a dual role, both as a framework for normative assessment (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why bounded rationality (in epistemology)?David Thorstad - 2024 - Philosophy and Phenomenological Research 108 (2):396-413.
    Bounded rationality gets a bad rap in epistemology. It is argued that theories of bounded rationality are overly context‐sensitive; conventionalist; or dependent on ordinary language (Carr, 2022; Pasnau, 2013). In this paper, I have three aims. The first is to set out and motivate an approach to bounded rationality in epistemology inspired by traditional theories of bounded rationality in cognitive science. My second aim is to show how this approach can answer recent challenges raised for theories of bounded rationality. My (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The best game in town: The reemergence of the language-of-thought hypothesis across the cognitive sciences.Jake Quilty-Dunn, Nicolas Porot & Eric Mandelbaum - 2023 - Behavioral and Brain Sciences 46:e261.
    Mental representations remain the central posits of psychology after many decades of scrutiny. However, there is no consensus about the representational format(s) of biological cognition. This paper provides a survey of evidence from computational cognitive psychology, perceptual psychology, developmental psychology, comparative psychology, and social psychology, and concludes that one type of format that routinely crops up is the language-of-thought (LoT). We outline six core properties of LoTs: (i) discrete constituents; (ii) role-filler independence; (iii) predicate–argument structure; (iv) logical operators; (v) inferential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Logic, Probability, and Pragmatics in Syllogistic Reasoning.Michael Henry Tessler, Joshua B. Tenenbaum & Noah D. Goodman - 2022 - Topics in Cognitive Science 14 (3):574-601.
    Topics in Cognitive Science, Volume 14, Issue 3, Page 574-601, July 2022.
    Download  
     
    Export citation  
     
    Bookmark  
  • Don't trust Fodor's guide in Monte Carlo: Learning concepts by hypothesis testing without circularity.Michael Deigan - 2023 - Mind and Language 38 (2):355-373.
    Fodor argued that learning a concept by hypothesis testing would involve an impossible circularity. I show that Fodor's argument implicitly relies on the assumption that actually φ-ing entails an ability to φ. But this assumption is false in cases of φ-ing by luck, and just such luck is involved in testing hypotheses with the kinds of generative random sampling methods that many cognitive scientists take our minds to use. Concepts thus can be learned by hypothesis testing without circularity, and it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Metaphysics of the Bayesian mind.Justin Tiehen - 2022 - Mind and Language 38 (2):336-354.
    Recent years have seen a Bayesian revolution in cognitive science. This should be of interest to metaphysicians of science, whose naturalist project involves working out the metaphysical implications of our leading scientific accounts, and in advancing our understanding of those accounts by drawing on the metaphysical frameworks developed by philosophers. Toward these ends, in this paper I develop a metaphysics of the Bayesian mind. My central claim is that the Bayesian approach supports a novel empirical argument for normativism, the thesis (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Transitional attitudes and the unmooring view of higher‐order evidence.Julia Staffel - 2021 - Noûs 57 (1):238-260.
    This paper proposes a novel answer to the question of what attitude agents should adopt when they receive misleading higher-order evidence that avoids the drawbacks of existing views. The answer builds on the independently motivated observation that there is a difference between attitudes that agents form as conclusions of their reasoning, called terminal attitudes, and attitudes that are formed in a transitional manner in the process of reasoning, called transitional attitudes. Terminal and transitional attitudes differ both in their descriptive and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Personalizing Human-Agent Interaction Through Cognitive Models.Tim Schürmann & Philipp Beckerle - 2020 - Frontiers in Psychology 11.
    Cognitive modeling of human behavior has advanced the understanding of underlying processes in several domains of psychology and cognitive science. In this article, we outline how we expect cognitive modeling to improve comprehension of individual cognitive processes in human-agent interaction and, particularly, human-robot interaction (HRI). We argue that cognitive models offer advantages compared to data-analytical models, specifically for research questions with expressed interest in theories of cognitive functions. However, the implementation of cognitive models is arguably more complex than common statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rational monism and rational pluralism.Jack Spencer - 2020 - Philosophical Studies 178 (6):1769-1800.
    Consequentialists often assume rational monism: the thesis that options are always made rationally permissible by the maximization of the selfsame quantity. This essay argues that consequentialists should reject rational monism and instead accept rational pluralism: the thesis that, on different occasions, options are made rationally permissible by the maximization of different quantities. The essay then develops a systematic form of rational pluralism which, unlike its rivals, is capable of handling both the Newcomb problems that challenge evidential decision theory and the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)The science of belief: A progress report.Nicolas Porot & Eric Mandelbaum - forthcoming - WIREs Cognitive Science 1.
    The empirical study of belief is emerging at a rapid clip, uniting work from all corners of cognitive science. Reliance on belief in understanding and predicting behavior is widespread. Examples can be found, inter alia, in the placebo, attribution theory, theory of mind, and comparative psychological literatures. Research on belief also provides evidence for robust generalizations, including about how we fix, store, and change our beliefs. Evidence supports the existence of a Spinozan system of belief fixation: one that is automatic (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Can resources save rationality? ‘Anti-Bayesian’ updating in cognition and perception.Eric Mandelbaum, Isabel Won, Steven Gross & Chaz Firestone - 2020 - Behavioral and Brain Sciences 143:e16.
    Resource rationality may explain suboptimal patterns of reasoning; but what of “anti-Bayesian” effects where the mind updates in a direction opposite the one it should? We present two phenomena — belief polarization and the size-weight illusion — that are not obviously explained by performance- or resource-based constraints, nor by the authors’ brief discussion of reference repulsion. Can resource rationality accommodate them?
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What comes to mind?Adam Bear, Samantha Bensinger, Julian Jara-Ettinger, Joshua Knobe & Fiery Cushman - 2020 - Cognition 194 (C):104057.
    When solving problems, like making predictions or choices, people often “sample” possibilities into mind. Here, we consider whether there is structure to the kinds of thoughts people sample by default—that is, without an explicit goal. Across three experiments we found that what comes to mind by default are samples from a probability distribution that combines what people think is likely and what they think is good. Experiment 1 found that the first quantities that come to mind for everyday behaviors and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Perspectival Plurality, Relativism, and Multiple Indexing.Dan Zeman - 2018 - In Rob Truswell, Chris Cummins, Caroline Heycock, Brian Rabern & Hannah Rohde (eds.), Proceedings of Sinn und Bedeutung 21. Semantics Archives. pp. 1353-1370.
    In this paper I focus on a recently discussed phenomenon illustrated by sentences containing predicates of taste: the phenomenon of " perspectival plurality " , whereby sentences containing two or more predicates of taste have readings according to which each predicate pertains to a different perspective. This phenomenon has been shown to be problematic for (at least certain versions of) relativism. My main aim is to further the discussion by showing that the phenomenon extends to other perspectival expressions than predicates (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Troubles with Bayesianism: An introduction to the psychological immune system.Eric Mandelbaum - 2018 - Mind and Language 34 (2):141-157.
    A Bayesian mind is, at its core, a rational mind. Bayesianism is thus well-suited to predict and explain mental processes that best exemplify our ability to be rational. However, evidence from belief acquisition and change appears to show that we do not acquire and update information in a Bayesian way. Instead, the principles of belief acquisition and updating seem grounded in maintaining a psychological immune system rather than in approximating a Bayesian processor.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • (1 other version)Rationality: Constraints and Contexts.Timothy Joseph Lane & Tzu-Wei Hung (eds.) - 2016 - London, U.K.: Elsevier Academic Press.
    "Rationality: Contexts and Constraints" is an interdisciplinary reappraisal of the nature of rationality. In method, it is pluralistic, drawing upon the analytic approaches of philosophy, linguistics, neuroscience, and more. These methods guide exploration of the intersection between traditional scholarship and cutting-edge philosophical or scientific research. In this way, the book contributes to development of a suitably revised, comprehensive understanding of rationality, one that befits the 21st century, one that is adequately informed by recent investigations of science, pathology, non-human thought, emotion, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The psychological representation of modality.Jonathan Phillips & Joshua Knobe - 2018 - Mind and Language 33 (1):65-94.
    A series of recent studies have explored the impact of people's judgments regarding physical law, morality, and probability. Surprisingly, such studies indicate that these three apparently unrelated types of judgments often have precisely the same impact. We argue that these findings provide evidence for a more general hypothesis about the kind of cognition people use to think about possibilities. Specifically, we suggest that this aspect of people's cognition is best understood using an idea developed within work in the formal semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Building machines that learn and think like people.Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum & Samuel J. Gershman - 2017 - Behavioral and Brain Sciences 40.
    Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Overrepresentation of extreme events in decision making reflects rational use of cognitive resources.Falk Lieder, Thomas L. Griffiths & Ming Hsu - 2018 - Psychological Review 125 (1):1-32.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Bayesian reverse-engineering considered as a research strategy for cognitive science.Carlos Zednik & Frank Jäkel - 2016 - Synthese 193 (12):3951-3985.
    Bayesian reverse-engineering is a research strategy for developing three-level explanations of behavior and cognition. Starting from a computational-level analysis of behavior and cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous tweaks and heuristics to formulate testable hypotheses at the algorithmic and implementational levels. In so doing, they exploit recent technological advances in Bayesian artificial intelligence, machine learning, and statistics, but also consider established principles from cognitive psychology and neuroscience. Although these tweaks and heuristics are highly pragmatic in character and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Does Perceptual Consciousness Overflow Cognitive Access? The Challenge from Probabilistic, Hierarchical Processes.Steven Gross & Jonathan Flombaum - 2017 - Mind and Language 32 (3):358-391.
    Does perceptual consciousness require cognitive access? Ned Block argues that it does not. Central to his case are visual memory experiments that employ post-stimulus cueing—in particular, Sperling's classic partial report studies, change-detection work by Lamme and colleagues, and a recent paper by Bronfman and colleagues that exploits our perception of ‘gist’ properties. We argue contra Block that these experiments do not support his claim. Our reinterpretations differ from previous critics' in challenging as well a longstanding and common view of visual (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Subjective Probability as Sampling Propensity.Thomas Icard - 2016 - Review of Philosophy and Psychology 7 (4):863-903.
    Subjective probability plays an increasingly important role in many fields concerned with human cognition and behavior. Yet there have been significant criticisms of the idea that probabilities could actually be represented in the mind. This paper presents and elaborates a view of subjective probability as a kind of sampling propensity associated with internally represented generative models. The resulting view answers to some of the most well known criticisms of subjective probability, and is also supported by empirical work in neuroscience and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Adjectival vagueness in a Bayesian model of interpretation.Daniel Lassiter & Noah D. Goodman - 2017 - Synthese 194 (10):3801-3836.
    We derive a probabilistic account of the vagueness and context-sensitivity of scalar adjectives from a Bayesian approach to communication and interpretation. We describe an iterated-reasoning architecture for pragmatic interpretation and illustrate it with a simple scalar implicature example. We then show how to enrich the apparatus to handle pragmatic reasoning about the values of free variables, explore its predictions about the interpretation of scalar adjectives, and show how this model implements Edgington’s Vagueness: a reader, 1997) account of the sorites paradox, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Rational Use of Cognitive Resources: Levels of Analysis Between the Computational and the Algorithmic.Thomas L. Griffiths, Falk Lieder & Noah D. Goodman - 2015 - Topics in Cognitive Science 7 (2):217-229.
    Marr's levels of analysis—computational, algorithmic, and implementation—have served cognitive science well over the last 30 years. But the recent increase in the popularity of the computational level raises a new challenge: How do we begin to relate models at different levels of analysis? We propose that it is possible to define levels of analysis that lie between the computational and the algorithmic, providing a way to build a bridge between computational- and algorithmic-level models. The key idea is to push the (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Rational variability in children’s causal inferences: The Sampling Hypothesis.Stephanie Denison, Elizabeth Bonawitz, Alison Gopnik & Thomas L. Griffiths - 2013 - Cognition 126 (2):285-300.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • People's thinking plans adapt to the problem they're trying to solve.Joan Danielle K. Ongchoco, Joshua Knobe & Julian Jara-Ettinger - 2024 - Cognition 243 (C):105669.
    Much of our thinking focuses on deciding what to do in situations where the space of possible options is too large to evaluate exhaustively. Previous work has found that people do this by learning the general value of different behaviors, and prioritizing thinking about high-value options in new situations. Is this good-action bias always the best strategy, or can thinking about low-value options sometimes become more beneficial? Can people adapt their thinking accordingly based on the situation? And how do we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A rational reinterpretation of dual-process theories.Smitha Milli, Falk Lieder & Thomas L. Griffiths - 2021 - Cognition 217 (C):104881.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Causal Judgment in the Wild: Evidence from the 2020 U.S. Presidential Election.Tadeg Quillien & Michael Barlev - 2022 - Cognitive Science 46 (2):e13101.
    Cognitive Science, Volume 46, Issue 2, February 2022.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Representing credal imprecision: from sets of measures to hierarchical Bayesian models.Daniel Lassiter - 2020 - Philosophical Studies 177 (6):1463-1485.
    The basic Bayesian model of credence states, where each individual’s belief state is represented by a single probability measure, has been criticized as psychologically implausible, unable to represent the intuitive distinction between precise and imprecise probabilities, and normatively unjustifiable due to a need to adopt arbitrary, unmotivated priors. These arguments are often used to motivate a model on which imprecise credal states are represented by sets of probability measures. I connect this debate with recent work in Bayesian cognitive science, where (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Manipulation is key: on why non-mechanistic explanations in the cognitive sciences also describe relations of manipulation and control.Lotem Elber-Dorozko - 2018 - Synthese 195 (12):5319-5337.
    A popular view presents explanations in the cognitive sciences as causal or mechanistic and argues that an important feature of such explanations is that they allow us to manipulate and control the explanandum phenomena. Nonetheless, whether there can be explanations in the cognitive sciences that are neither causal nor mechanistic is still under debate. Another prominent view suggests that both causal and non-causal relations of counterfactual dependence can be explanatory, but this view is open to the criticism that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interactive Activation and Mutual Constraint Satisfaction in Perception and Cognition.James L. McClelland, Daniel Mirman, Donald J. Bolger & Pranav Khaitan - 2014 - Cognitive Science 38 (6):1139-1189.
    In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation hypothesis—the idea that the mechanism used in perception and comprehension to achieve these feats exploits an interactive activation process implemented through the bidirectional propagation of activation among simple processing units. We then examine the interactive activation (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The social sciences needs more than integrative experimental designs: We need better theories.Moshe Hoffman, Tadeg Quillien & Bethany Burum - 2024 - Behavioral and Brain Sciences 47:e47.
    Almaatouq et al.'s prescription for more integrative experimental designs is welcome but does not address an equally important problem: Lack of adequate theories. We highlight two features theories ought to satisfy: “Well-specified” and “grounded.” We discuss the importance of these features, some positive exemplars, and the complementarity between the target article's prescriptions and improved theorizing.
    Download  
     
    Export citation  
     
    Bookmark  
  • Bayesian collective learning emerges from heuristic social learning.P. M. Krafft, Erez Shmueli, Thomas L. Griffiths, Joshua B. Tenenbaum & Alex “Sandy” Pentland - 2021 - Cognition 212 (C):104469.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Why Higher Working Memory Capacity May Help You Learn: Sampling, Search, and Degrees of Approximation.Kevin Lloyd, Adam Sanborn, David Leslie & Stephan Lewandowsky - 2019 - Cognitive Science 43 (12):e12805.
    Algorithms for approximate Bayesian inference, such as those based on sampling (i.e., Monte Carlo methods), provide a natural source of models of how people may deal with uncertainty with limited cognitive resources. Here, we consider the idea that individual differences in working memory capacity (WMC) may be usefully modeled in terms of the number of samples, or “particles,” available to perform inference. To test this idea, we focus on two recent experiments that report positive associations between WMC and two distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bayes, Bounds, and Rational Analysis.Thomas F. Icard - 2018 - Philosophy of Science 85 (1):79-101.
    While Bayesian models have been applied to an impressive range of cognitive phenomena, methodological challenges have been leveled concerning their role in the program of rational analysis. The focus of the current article is on computational impediments to probabilistic inference and related puzzles about empirical confirmation of these models. The proposal is to rethink the role of Bayesian methods in rational analysis, to adopt an independently motivated notion of rationality appropriate for computationally bounded agents, and to explore broad conditions under (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Optimal Allocation of Finite Sampling Capacity in Accumulator Models of Multialternative Decision Making.Jorge Ramírez-Ruiz & Rubén Moreno-Bote - 2022 - Cognitive Science 46 (5):e13143.
    Cognitive Science, Volume 46, Issue 5, May 2022.
    Download  
     
    Export citation  
     
    Bookmark  
  • Overcoming Individual Limitations Through Distributed Computation: Rational Information Accumulation in Multigenerational Populations.Mathew D. Hardy, Peaks M. Krafft, Bill Thompson & Thomas L. Griffiths - 2022 - Topics in Cognitive Science 14 (3):550-573.
    Topics in Cognitive Science, Volume 14, Issue 3, Page 550-573, July 2022.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Editors' Introduction: Computational Approaches to Social Cognition.Fiery Cushman & Samuel Gershman - 2019 - Topics in Cognitive Science 11 (2):281-298.
    What place should formal or computational methods occupy in social psychology? We consider this question in historical perspective, survey the current state of the field, introduce the several new contributions to this special issue, and reflect on the future.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A normative inference approach for optimal sample sizes in decisions from experience.Dirk Ostwald, Ludger Starke & Ralph Hertwig - 2015 - Frontiers in Psychology 6:132679.
    “Decisions from experience” (DFE) refers to a body of work that emerged in research on behavioral decision making over the last decade. One of the major experimental paradigms employed to study experienced-based choice is the “sampling paradigm”, which serves as a model of decision making under limited knowledge about the statistical structure of the world. In this paradigm respondents are presented with two payoff distributions, which, in contrast to standard approaches in behavioral economics, are specified not in terms of explicit (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Sticking to the Evidence? A Behavioral and Computational Case Study of Micro‐Theory Change in the Domain of Magnetism.Elizabeth Bonawitz, Tomer D. Ullman, Sophie Bridgers, Alison Gopnik & Joshua B. Tenenbaum - 2019 - Cognitive Science 43 (8):e12765.
    Constructing an intuitive theory from data confronts learners with a “chicken‐and‐egg” problem: The laws can only be expressed in terms of the theory's core concepts, but these concepts are only meaningful in terms of the role they play in the theory's laws; how can a learner discover appropriate concepts and laws simultaneously, knowing neither to begin with? We explore how children can solve this chicken‐and‐egg problem in the domain of magnetism, drawing on perspectives from computational modeling and behavioral experiments. We (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inferring mass in complex scenes by mental simulation.Jessica B. Hamrick, Peter W. Battaglia, Thomas L. Griffiths & Joshua B. Tenenbaum - 2016 - Cognition 157 (C):61-76.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Process Model of Causal Reasoning.Zachary J. Davis & Bob Rehder - 2020 - Cognitive Science 44 (5):e12839.
    How do we make causal judgments? Many studies have demonstrated that people are capable causal reasoners, achieving success on tasks from reasoning to categorization to interventions. However, less is known about the mental processes used to achieve such sophisticated judgments. We propose a new process model—the mutation sampler—that models causal judgments as based on a sample of possible states of the causal system generated using the Metropolis–Hastings sampling algorithm. Across a diverse array of tasks and conditions encompassing over 1,700 participants, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Remembrance of inferences past: Amortization in human hypothesis generation.Ishita Dasgupta, Eric Schulz, Noah D. Goodman & Samuel J. Gershman - 2018 - Cognition 178 (C):67-81.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • How many kinds of reasoning? Inference, probability, and natural language semantics.Daniel Lassiter & Noah D. Goodman - 2015 - Cognition 136 (C):123-134.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Resource‐Rational, Process‐Level Account of the St. Petersburg Paradox.Ardavan S. Nobandegani & Thomas R. Shultz - 2020 - Topics in Cognitive Science 12 (1):417-432.
    How much would you pay to play a lottery with an “infinite expected payoff?” In the case of the century old, St. Petersburg Paradox, the answer is that the vast majority of people would only pay a small amount. The authors seek to understand this paradox by providing an explanation consistent with a broad, process‐level model of human decision‐making under risk.
    Download  
     
    Export citation  
     
    Bookmark  
  • The enigma is not entirely dispelled: A review of Mercier and Sperber's The Enigma of Reason[REVIEW]Nick Chater & Mike Oaksford - 2018 - Mind and Language 33 (5):525-532.
    Mercier and Sperber illuminate many aspects of reasoning and rationality, providing refreshing and thoughtful analysis and elegant and well‐researched illustrations. They make a good case that reasoning should be viewed as a type of intuition, rather than a separate cognitive process or system. Yet questions remain. In what sense, if any, is reasoning a “module?” What is the link between rationality within an individual and rationality defined through the interaction between individuals? Formal theories of rationality, from logic, probability theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Combining meta-learned models with process models of cognition.Adam N. Sanborn, Haijiang Yan & Christian Tsvetkov - 2024 - Behavioral and Brain Sciences 47:e163.
    Meta-learned models of cognition make optimal predictions for the actual stimuli presented to participants, but investigating judgment biases by constraining neural networks will be unwieldy. We suggest combining them with cognitive process models, which are more intuitive and explain biases. Rational process models, those that can sequentially sample from the posterior distributions produced by meta-learned models, seem a natural fit.
    Download  
     
    Export citation  
     
    Bookmark  
  • Gamble evaluation and evoked reference sets: Why adding a small loss to a gamble increases its attractiveness.Craig R. M. McKenzie & Shlomi Sher - 2020 - Cognition 194 (C):104043.
    Download  
     
    Export citation  
     
    Bookmark