Switch to: References

Add citations

You must login to add citations.
  1. Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Instructions and constructions in set theory proofs.Keith Weber - 2023 - Synthese 202 (2):1-17.
    Traditional models of mathematical proof describe proofs as sequences of assertion where each assertion is a claim about mathematical objects. However, Tanswell observed that in practice, many proofs do not follow these models. Proofs often contain imperatives, and other instructions for the reader to perform mathematical actions. The purpose of this paper is to examine the role of instructions in proofs by systematically analyzing how instructions are used in Kunen’s Set theory: An introduction to independence proofs, a widely used graduate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophical Assumptions Behind the Rejection of Computer-Based Proofs.Katia Parshina - 2023 - Kriterion – Journal of Philosophy 37 (2-4):105-122.
    In 1977, the first computer-assisted proof of a mathematical theorem was presented by K. Appel and W. Haken. The proof was met with a lot of criticism from both mathematicians and philosophers. In this paper, I present some examples of computer-assisted proofs, including Appel and Haken’s work. Then, I analyze the most famous arguments against the equal acceptance of computer-based and human-based proofs in mathematics and examine the philosophical assumptions behind the presented criticism. In the conclusion, I talk about whether (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Experimenting with Triangles.Valeria Giardino - 2022 - Axiomathes 32 (1):55-77.
    Is there anything like an experiment in mathematics? And if this is the case, what would distinguish a mathematical experiment from a mathematical thought experiment? In the present paper, a framework for the practice of mathematics will be put forward, which will consider mathematics as an experimenting activity and as a proving activity. The relationship between these two activities will be explored and more importantly a distinction between thought-experiments, real experiments, quasi experiments and proofs in pure mathematics will be provided. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Visual Proofs as Counterexamples to the Standard View of Informal Mathematical Proofs?Simon Weisgerber - 2022 - In Giardino V., Linker S., Burns R., Bellucci F., Boucheix J.-M. & Viana P. (eds.), Diagrammatic Representation and Inference. 13th International Conference, Diagrams 2022, Rome, Italy, September 14–16, 2022, Proceedings. Springer, Cham. pp. 37-53.
    A passage from Jody Azzouni’s article “The Algorithmic-Device View of Informal Rigorous Mathematical Proof” in which he argues against Hamami and Avigad’s standard view of informal mathematical proof with the help of a specific visual proof of 1/2+1/4+1/8+1/16+⋯=1 is critically examined. By reference to mathematicians’ judgments about visual proofs in general, it is argued that Azzouni’s critique of Hamami and Avigad’s account is not valid. Nevertheless, by identifying a necessary condition for the visual proof to be considered a proper proof (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is Mathematical Rigor?John Burgess & Silvia De Toffoli - 2022 - Aphex 25:1-17.
    Rigorous proof is supposed to guarantee that the premises invoked imply the conclusion reached, and the problem of rigor may be described as that of bringing together the perspectives of formal logic and mathematical practice on how this is to be achieved. This problem has recently raised a lot of discussion among philosophers of mathematics. We survey some possible solutions and argue that failure to understand its terms properly has led to misunderstandings in the literature.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The philosophy of logical practice.Ben Martin - 2022 - Metaphilosophy 53 (2-3):267-283.
    Metaphilosophy, Volume 53, Issue 2-3, Page 267-283, April 2022.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reconciling Rigor and Intuition.Silvia De Toffoli - 2020 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Role of Imagination and Anticipation in the Acceptance of Computability Proofs: A Challenge to the Standard Account of Rigor.Keith Weber - 2022 - Philosophia Mathematica 30 (3):343-368.
    In a 2022 paper, Hamami claimed that the orthodox view in mathematics is that a proof is rigorous if it can be translated into a derivation. Hamami then developed a descriptive account that explains how mathematicians check proofs for rigor in this sense and how they develop the capacity to do so. By exploring introductory texts in computability theory, we demonstrate that Hamami’s descriptive account does not accord with actual mathematical practice with respect to computability theory. We argue instead for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Logic for Mathematics without Ex Falso Quodlibet.Neil Tennant - 2024 - Philosophia Mathematica 32 (2):177-215.
    Informally rigorous mathematical reasoning is relevant. So too should be the premises to the conclusions of formal proofs that regiment it. The rule Ex Falso Quodlibet induces spectacular irrelevance. We therefore drop it. The resulting systems of Core Logic $ \mathbb{C}$ and Classical Core Logic $ \mathbb{C}^{+}$ can formalize all the informally rigorous reasoning in constructive and classical mathematics respectively. We effect a revised match-up between deducibility in Classical Core Logic and a new notion of relevant logical consequence. It matches (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rigour and Proof.Oliver Tatton-Brown - 2023 - Review of Symbolic Logic 16 (2):480-508.
    This paper puts forward a new account of rigorous mathematical proof and its epistemology. One novel feature is a focus on how the skill of reading and writing valid proofs is learnt, as a way of understanding what validity itself amounts to. The account is used to address two current questions in the literature: that of how mathematicians are so good at resolving disputes about validity, and that of whether rigorous proofs are necessarily formalizable.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Formalization: Deriving the Cantor-Bernstein Theorem in Zf.Wilfried Sieg & Patrick Walsh - 2021 - Review of Symbolic Logic 14 (1):250-284.
    Natural Formalization proposes a concrete way of expanding proof theory from the meta-mathematical investigation of formal theories to an examination of “the concept of the specifically mathematical proof.” Formal proofs play a role for this examination in as much as they reflect the essential structure and systematic construction of mathematical proofs. We emphasize three crucial features of our formal inference mechanism: (1) the underlying logical calculus is built for reasoning with gaps and for providing strategic directions, (2) the mathematical frame (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Logic of informal provability with truth values.Pawel Pawlowski & Rafal Urbaniak - 2023 - Logic Journal of the IGPL 31 (1):172-193.
    Classical logic of formal provability includes Löb’s theorem, but not reflection. In contrast, intuitions about the inferential behavior of informal provability (in informal mathematics) seem to invalidate Löb’s theorem and validate reflection (after all, the intuition is, whatever mathematicians prove holds!). We employ a non-deterministic many-valued semantics and develop a modal logic T-BAT of an informal provability operator, which indeed does validate reflection and invalidates Löb’s theorem. We study its properties and its relation to known provability-related paradoxical arguments. We also (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the unreasonable reliability of mathematical inference.Brendan Philip Larvor - 2022 - Synthese 200 (4):1-16.
    In, Jeremy Avigad makes a novel and insightful argument, which he presents as part of a defence of the ‘Standard View’ about the relationship between informal mathematical proofs and their corresponding formal derivations. His argument considers the various strategies by means of which mathematicians can write informal proofs that meet mathematical standards of rigour, in spite of the prodigious length, complexity and conceptual difficulty that some proofs exhibit. He takes it that showing that and how such strategies work is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rationality in Mathematical Proofs.Yacin Hamami & Rebecca Lea Morris - 2023 - Australasian Journal of Philosophy 101 (4):793-808.
    Mathematical proofs are not sequences of arbitrary deductive steps—each deductive step is, to some extent, rational. This paper aims to identify and characterize the particular form of rationality at play in mathematical proofs. The approach adopted consists in viewing mathematical proofs as reports of proof activities—that is, sequences of deductive inferences—and in characterizing the rationality of the former in terms of that of the latter. It is argued that proof activities are governed by specific norms of rational planning agency, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Plans and planning in mathematical proofs.Yacin Hamami & Rebecca Lea Morris - 2020 - Review of Symbolic Logic 14 (4):1030-1065.
    In practice, mathematical proofs are most often the result of careful planning by the agents who produced them. As a consequence, each mathematical proof inherits a plan in virtue of the way it is produced, a plan which underlies its “architecture” or “unity”. This paper provides an account of plans and planning in the context of mathematical proofs. The approach adopted here consists in looking for these notions not in mathematical proofs themselves, but in the agents who produced them. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Definitions in practice: An interview study.V. J. W. Coumans & L. Consoli - 2023 - Synthese 202 (1):1-32.
    In the philosophy of mathematical practice, the aim is to understand the various aspects of this practice. Even though definitions are a central element of mathematical practice, the study of this aspect of mathematical practice is still in its infancy. In particular, there is little empirical evidence to substantiate claims about definitions in practice. In this article, we address this gap by reporting on an empirical investigation on how mathematicians create definitions and which roles and properties they attribute to them. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations