Switch to: References

Citations of:

Kant on the Mathematical Method

The Monist 51 (3):352-375 (1967)

Add citations

You must login to add citations.
  1. Kant's syntheticity revisited by Peirce.Sun-joo Shin - 1997 - Synthese 113 (1):1-41.
    This paper reconstructs the Peircean interpretation of Kant's doctrine on the syntheticity of mathematics. Peirce correctly locates Kant's distinction in two different sources: Kant's lack of access to polyadic logic and, more interestingly, Kant's insight into the role of ingenious experiments required in theorem-proving. In this second respect, Kant's analytic/synthetic distinction is identical with the distinction Peirce discovered among types of mathematical reasoning. I contrast this Peircean theory with two other prominent views on Kant's syntheticity, i.e. the Russellian and the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Kant's transcendental imagination.Gary Banham - 2005 - New York: Palgrave-Macmillan.
    The role and place of transcendental psychology in Kant's Critique of Pure Reason has been a source of some contention. This work presents a detailed argument for restoring transcendental psychology to a central place in the interpretation of Kant's Analytic, in the process providing a detailed response to more "austere" analytic readings.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Kant on the Nature of Logical Laws.Clinton Tolley - 2006 - Philosophical Topics 34 (1-2):371-407.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • On the Formal Validity of Proof by Contradiction in Kant’s Logic.Davide Dalla Rosa - 2022 - History of Philosophy & Logical Analysis 25 (1):95-114.
    The paper provides a reconstruction of proof by contradiction in Kant’s pure general logic. A seemingly less-explored point of view on this topic is how apagogical proof can account for the formal truth of a judgement. Integrating the argument held by Kjosavik (2019), I intend to highlight how one can use proof by contradiction, conceived as a modus tollens, to establish the logical actuality (logical or formal truth) of a cognition. Although one might agree on the capacity of the proof (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Signo e sentido interno na filosofia da matemática pré-crítica.Ernesto Maria Giusti - 2005 - Dois Pontos 2 (2).
    Este artigo defende que, na Investigação sobre os princípios da teologia natural e da Moral, o conceito de “sentido interno” é central à reflexão kantiana sobre a matemática. Ele não deve ser entendido em sua acepção crítica, mas corresponde antes àquela derivada de Locke, pelo intermédio de Crusius, e se resume a uma reflexão mental sobre figuras e conceitos matemáticos. Ao incluir no sentido interno a dimensão simbólica do conhecimento matemático, Kant podia ainda ignorar um dos problemas centrais de sua (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The sensible foundation for mathematics: A defense of Kant's view.Mark Risjord - 1990 - Studies in History and Philosophy of Science Part A 21 (1):123-143.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Kant on space, empirical realism and the foundations of geometry.William Harper - 1984 - Topoi 3 (2):143-161.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Russell and Kant.J. Alberto Coffa - 1981 - Synthese 46 (2):247 - 263.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • It Adds Up After All: Kant’s Philosophy of Arithmetic in Light of the Traditional Logic.R. Lanier Anderson - 2004 - Philosophy and Phenomenological Research 69 (3):501–540.
    Officially, for Kant, judgments are analytic iff the predicate is "contained in" the subject. I defend the containment definition against the common charge of obscurity, and argue that arithmetic cannot be analytic, in the resulting sense. My account deploys two traditional logical notions: logical division and concept hierarchies. Division separates a genus concept into exclusive, exhaustive species. Repeated divisions generate a hierarchy, in which lower species are derived from their genus, by adding differentia(e). Hierarchies afford a straightforward sense of containment: (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Geometría, Esquemas e Idealización: Una Módica Defensa de la Filosofía de la Geometría de Kant.Alvaro J. Peláez Cedrés - 2008 - Revista de filosofía (Chile) 64:65-77.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Immanuel Kant: Kritik der reinen Vernunft.Georg Mohr & Marcus Willaschek (eds.) - 2024 - De Gruyter.
    Der Kommentar zur Kritik der reinen Vernunft bietet eine textnahe Erschließung der zentralen Begriffe, Thesen und Argumentationsgänge von Kants Hauptwerk auf aktuellem Forschungsstand. Es ist der erste Kommentar zur KrV, der den gesamten Text in der Fassung der ersten und zweiten Auflage gleichmäßig und lückenlos berücksichtigt. Davon profitieren vor allem die „Transzendentale Dialektik“ und die „Methodenlehre“, die in früheren Gesamtkommentaren meist nicht hinreichend berücksichtigt worden sind. Die Beiträge wurden nach einheitlichen Richtlinien verfasst, wobei unterschiedliche Herangehensweisen und Interpretationsansätze zur Geltung kommen. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algunas apreciaciones acerca del concepto crítico de demostración.Luciana Martínez - 2022 - Logos. Anales Del Seminario de Metafísica [Universidad Complutense de Madrid, España] 55 (1):109-124.
    En este artículo se examina la noción kantiana de las demostraciones matemáticas. Esta noción se encuentra desarrollada en el apartado titulado “Disciplina de la razón pura en su uso dogmático” de la _Crítica de la razón pura. _En este texto, Kant explica por qué los procedimientos exitosos en el conocimiento matemático resultan impracticables en metafísica. En primer lugar se estudian dos pasajes en los que el filósofo describe dos demostraciones: la demostración de la congruencia de los ángulos de la base (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Spatial representation, magnitude and the two stems of cognition.Thomas Land - 2014 - Canadian Journal of Philosophy 44 (5-6):524-550.
    The aim of this paper is to show that attention to Kant's philosophy of mathematics sheds light on the doctrine that there are two stems of the cognitive capacity, which are distinct, but equally necessary for cognition. Specifically, I argue for the following four claims: The distinctive structure of outer sensible intuitions must be understood in terms of the concept of magnitude. The act of sensibly representing a magnitude involves a special act of spontaneity Kant ascribes to a capacity he (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Kant's Philosophy of Geometry--On the Road to a Final Assessment.L. Kvasz - 2011 - Philosophia Mathematica 19 (2):139-166.
    The paper attempts to summarize the debate on Kant’s philosophy of geometry and to offer a restricted area of mathematical practice for which Kant’s philosophy would be a reasonable account. Geometrical theories can be characterized using Wittgenstein’s notion of pictorial form . Kant’s philosophy of geometry can be interpreted as a reconstruction of geometry based on one of these forms — the projective form . If this is correct, Kant’s philosophy is a reasonable reconstruction of such theories as projective geometry; (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Two Models of Kantian Construction.Aljoša Kravanja - 2023 - Journal of Transcendental Philosophy 4 (2):137-155.
    According to Kant, we gain mathematical knowledge by constructing objects in pure intuition. This is true not only of geometry but arithmetic and algebra as well. Construction has prominent place in scholarly accounts of Kant’s views of mathematics. But did Kant have a clear vision of what construction is? The paper argues that Kant employed two different, even conflicting models of construction, depending on the philosophical issue he was dealing with. In the equivalence model, Kant claims that the object constructed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege's Critical Arguments for Axioms.Jim Hutchinson - 2021 - Pacific Philosophical Quarterly 102 (4):516-541.
    Why does Frege claim that logical axioms are ‘self‐evident,’ to be recognized as true ‘independently of other truths,’ and then offer arguments for those axioms? I argue that he thinks the arguments provide us with the justification that we need for accepting the axioms and that this is compatible with his remarks about self‐evidence. This compatibility depends on philosophical considerations connected with the ‘critical method’: an interesting approach to the justification of axioms endorsed by leading philosophers at the time.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Conceptual Analysis and the Analytic Method in Kant’s Prize Essay.Gabriele Gava - 2024 - Hopos: The Journal of the International Society for the History of Philosophy of Science 14 (1):164-184.
    Famously, in the essay Inquiry Concerning the Distinctness of the Principles of Natural Theology and Morality (Prize Essay), Kant attempts to distance himself from the Wolffian model of philosophical inquiry. In this respect, Kant scholars have pointed out Kant’s claim that philosophy should not imitate the method of mathematics and his appeal to Newton’s “analytic method.” In this article, I argue that there is an aspect of Kant’s critique of the Wolffian model that has been neglected. Kant presents a powerful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Meaning and Aesthetic Judgment in Kant.Eli Friedlander - 2006 - Philosophical Topics 34 (1-2):21-34.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kant on concepts and intuitions in the mathematical sciences.Michael Friedman - 1990 - Synthese 84 (2):213 - 257.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • El papel de los juicios de percepción y de los conceptos empíricos en la síntesis categorial.Rafael Reyna Fortes - 2021 - Logos. Anales Del Seminario de Metafísica [Universidad Complutense de Madrid, España] 54 (1):175-192.
    En este trabajo me propongo mostrar, en primer lugar, una interpretación de la distinción kantiana entre juicio de percepción y juicio de experiencia. Posteriormente reconstruiré el proceso de síntesis categorial e intentaré explicar qué papel juegan en dicha acción los conceptos empíricos. En definitiva, la tesis que se va a defender es que en el nivel de constitución de la experiencia tanto los conceptos empíricos como los juicios de percepción hacen posible la síntesis objetiva y, al mismo tiempo, ésta provee (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Kantian Philosophy of Mathematics? An Overview of Contemporary Studies.Maksim D. Evstigneev - 2021 - Kantian Journal 40 (2):151-178.
    This review of contemporary discussions of Kantian philosophy of mathematics is timed for the publication of the essay Kant’s Philosophy of Mathematics. Volume 1: The Critical Philosophy and Its Roots (2020) edited by Carl Posy and Ofra Rechter. The main discussions and comments are based on the texts contained in this collection. I first examine the more general questions which have to do not only with the philosophy of mathematics, but also with related areas of Kant’s philosophy, e. g. the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kant and Strawson on the Content of Geometrical Concepts.Katherine Dunlop - 2012 - Noûs 46 (1):86-126.
    This paper considers Kant's understanding of conceptual representation in light of his view of geometry.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Arbitrary combination and the use of signs in mathematics: Kant’s 1763 Prize Essay and its Wolffian background.Katherine Dunlop - 2014 - Canadian Journal of Philosophy 44 (5-6):658-685.
    In his 1763 Prize Essay, Kant is thought to endorse a version of formalism on which mathematical concepts need not apply to extramental objects. Against this reading, I argue that the Prize Essay has sufficient resources to explain how the objective reference of mathematical concepts is secured. This account of mathematical concepts’ objective reference employs material from Wolffian philosophy. On my reading, Kant's 1763 view still falls short of his Critical view in that it does not explain the universal, unconditional (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)3 Die Einleitung.Konrad Cramer - 2024 - In Georg Mohr & Marcus Willaschek (eds.), Immanuel Kant: Kritik der reinen Vernunft. De Gruyter. pp. 45-62.
    Download  
     
    Export citation  
     
    Bookmark  
  • Analysis and Necessity in Arithmetic in Light of Maimon’s Concept of Number as Ratio.Idit Chikurel - 2023 - Kant Studien 114 (1):33-67.
    The article examines how Salomon Maimon’s concept of number as ratio can be used to demonstrate that arithmetical judgments are analytical. Based on his critique of Kant’s synthetic a priori judgments, I show how this notion of number fulfills Maimon’s requirements for apodictic knowledge. Moreover, I suggest that Maimon was influenced by mathematicians who previously defined number as a ratio, such as Wallis and Newton. Following an analysis of the real definition of this concept, I conclude that within the framework (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mendelssohn and Kant on Mathematics and Metaphysics.John J. Callanan - 2014 - Kant Yearbook 6 (1):1-22.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Beauty in Proofs: Kant on Aesthetics in Mathematics.Angela Breitenbach - 2013 - European Journal of Philosophy 23 (4):955-977.
    It is a common thought that mathematics can be not only true but also beautiful, and many of the greatest mathematicians have attached central importance to the aesthetic merit of their theorems, proofs and theories. But how, exactly, should we conceive of the character of beauty in mathematics? In this paper I suggest that Kant's philosophy provides the resources for a compelling answer to this question. Focusing on §62 of the ‘Critique of Aesthetic Judgment’, I argue against the common view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Reading Kant’s doctrine of schematism algebraically.Farhad Alavi - 2020 - Philosophical Forum 51 (3):315-329.
    Kant’s investigations into so‐called a priori judgments of pure mathematics in the Critique of Pure Reason (KrV) are mainly confined to geometry and arithmetic both of which are grounded on our pure forms of intuition, space, and time. Nevertheless, as regards notions such as irrational numbers and continuous magnitudes, such a restricted account is crucially problematic. I argue that algebra can play a transcendental role with respect to the two pure intuitive sciences, arithmetic and geometry, as the condition of their (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On a semantic interpretation of Kant's concept of number.Wing-Chun Wong - 1999 - Synthese 121 (3):357-383.
    What is central to the progression of a sequence is the idea of succession, which is fundamentally a temporal notion. In Kant's ontology numbers are not objects but rules (schemata) for representing the magnitude of a quantum. The magnitude of a discrete quantum 11...11 is determined by a counting procedure, an operation which can be understood as a mapping from the ordinals to the cardinals. All empirical models for numbers isomorphic to 11...11 must conform to the transcendental determination of time-order. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Construction and the role of Schematism in Kant's philosophy of mathematics.A. T. Winterbourne - 1990 - Trans/Form/Ação 13:107-121.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Construction and the Role of Schematism in Kant's Philosophy of Mathematics.A. T. Winterbourne - 1981 - Studies in History and Philosophy of Science Part A 12 (1):33.
    This paper argues that kant's general epistemology incorporates a theory of algebra which entails a less constricted view of kant's philosophy of mathematics than is sometimes given. To extract a plausible theory of algebra from the "critique of pure reason", It is necessary to link kant's doctrine of mathematical construction to the idea of the "schematism". Mathematical construction can be understood to accommodate algebraic symbolism as well as the more familiar spatial configurations of geometry.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Synthesis, Sensibility, and Kant’s Philosophy of Mathematics.Carol A. Van Kirk - 1986 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1986 (1):135-144.
    Kant’s philosophy of mathematics presents two fundamental problems of interpretation: (1) Kant claims that mathematical truths or “judgments” are synthetic a priori; and (2) Kant maintains that intuition is required for generating and/or understanding mathematical statements. Both of these problems arise for us because of developments in mathematics since Kant. In particular, the axiomatization of geometry--Kant’s paradigm of mathematical thinking--has made it seem to some commentators as, for example, Russell, that both (1) and (2) are false (Russell 1919, p. 145).2 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Novum in veteri. J. Hintikka about Euclidean Origins of Kant’s Mathematical Method.Vitali Terletsky - 2015 - Sententiae 33 (2):75-92.
    Download  
     
    Export citation  
     
    Bookmark  
  • Remarks on the origin and foundations of formalisation.Srećko Kovač - 2020 - In Marcin Będkowski, Anna Brożek, Alicja Chybińska, Stepan Ivanyk & Dominik Traczykowski (eds.), Formal and Informal Methods in Philosophy. Boston: Brill | Rodopi. pp. 163-179..
    The Aristotelian origins of formal systems are outlined, together with Aristotle's use of causal terms in describing syllogisms. The precision and exactness of a formalism, based on the projection of logical forms into perceptive signs, is contrasted with foundational, abstract concepts, independent of any formalism, which are presupposed for the understanding of a formal language. The definition of a formal system by means of a Turing machine is put in the context of Wittgenstein's general considerations of a machine understood as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kant on de re. Some aspects of the Kantian non-conceptualism debate.Luca Forgione - 2015 - Kant Studies Online (1):32-64.
    In recent years non-conceptual content theorists have taken Kant as a reference point on account of his notion of intuition (§§ 1-2). The present work aims at exploring several complementary issues intertwined with the notion of non-conceptual content: of these, the first concerns the role of the intuition as an indexical representation (§ 3), whereas the second applies to the presence of a few epistemic features articulated according to the distinction between knowledge by acquaintance and knowledge by description (§ 4). (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Drawing From the Sources of Reason: Reflective Self-Knowledge in Kant's First "Critique".Melissa Mcbay Merritt - 2004 - Dissertation, University of Pittsburgh
    Kant advertises his Critique of Pure Reason as fulfilling reason's "most difficult" task: self-knowledge. As it is carried out in the Critique, this investigation is meant to be "scientific and fully illuminating"; for Kant, this means that it must follow a proper method. Commentators writing in English have tended to dismiss Kant's claim that the Critique is the scientific expression of reason's self-knowledge---either taking it to be sheer rhetoric, or worrying that it pollutes the Critique with an unfortunate residue of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The View from 1763: Kant on the Arithmetical Method before Intuition.Ofra Rechter - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 21--46.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Conexiones entre Kant, Proclo y Euclides, a partir de una interpretación de Hintikka.Javier Fuentes González - 2017 - Con-Textos Kantianos 5:261-277.
    En este texto se busca poner una base para una interpretación de la intuición y la construcción en Kant, para lo cual se analiza la célebre interpretación desarrollada por Hintikka. Este análisis muestra que esta interpretación presenta algunas debilidades, sin embargo, de ella se rescata que se puede alcanzar una comprensión de la intuición y la construcción vinculándolas con algunos planteamientos de los antiguos filósofos y matemáticos griegos, especialmente Proclo y Euclides. Más específicamente, se muestra que un punto de partida (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La geometría en el pensamiento de Kant.Roberto Torretti - 1974 - Logos. Anales Del Seminario de Metafísica [Universidad Complutense de Madrid, España] 9:9.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Existence and the Grounding of Metaphysics.Rafael Simian - 2011 - Ideas Y Valores 60 (147):113-141.
    Download  
     
    Export citation  
     
    Bookmark