Switch to: References

Add citations

You must login to add citations.
  1. Representing Types as Neural Events.Robin Cooper - 2019 - Journal of Logic, Language and Information 28 (2):131-155.
    One of the claims of Type Theory with Records is that it can be used to model types learned by agents in order to classify objects and events in the world, including speech events. That is, the types can be represented by patterns of neural activation in the brain. This claim would be empty if it turns out that the types are in principle impossible to represent on a finite network of neurons. We will discuss how to represent types in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A meaning explanation for HoTT.Dimitris Tsementzis - 2020 - Synthese 197 (2):651-680.
    In the Univalent Foundations of mathematics spatial notions like “point” and “path” are primitive, rather than derived, and all of mathematics is encoded in terms of them. A Homotopy Type Theory is any formal system which realizes this idea. In this paper I will focus on the question of whether a Homotopy Type Theory can be justified intuitively as a theory of shapes in the same way that ZFC can be justified intuitively as a theory of collections. I first clarify (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Consistency of the intensional level of the Minimalist Foundation with Church’s thesis and axiom of choice.Hajime Ishihara, Maria Emilia Maietti, Samuele Maschio & Thomas Streicher - 2018 - Archive for Mathematical Logic 57 (7-8):873-888.
    Consistency with the formal Church’s thesis, for short CT, and the axiom of choice, for short AC, was one of the requirements asked to be satisfied by the intensional level of a two-level foundation for constructive mathematics as proposed by Maietti and Sambin From sets and types to topology and analysis: practicable foundations for constructive mathematics, Oxford University Press, Oxford, 2005). Here we show that this is the case for the intensional level of the two-level Minimalist Foundation, for short MF, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What is a Higher Level Set?Dimitris Tsementzis - 2016 - Philosophia Mathematica:nkw032.
    Structuralist foundations of mathematics aim for an ‘invariant’ conception of mathematics. But what should be their basic objects? Two leading answers emerge: higher groupoids or higher categories. I argue in favor of the former over the latter. First, I explain why to choose between them we need to ask the question of what is the correct ‘categorified’ version of a set. Second, I argue in favor of groupoids over categories as ‘categorified’ sets by introducing a pre-formal understanding of groupoids as (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Construction of Type: Type in Martin-Lof's Partial Type Theory with One Universe.Erik Palmgren - 1991 - Journal of Symbolic Logic 56 (3):1012-1015.
    Download  
     
    Export citation  
     
    Bookmark  
  • A constructive manifestation of the Kleene–Kreisel continuous functionals.Martín Escardó & Chuangjie Xu - 2016 - Annals of Pure and Applied Logic 167 (9):770-793.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Justification of the Logical Laws Revisited.Patrizio Contu - 2006 - Synthese 148 (3):573-588.
    The proof-theoretic analysis of logical semantics undermines the received view of proof theory as being concerned with symbols devoid of meaning, and of model theory as the sole branch of logical theory entitled to access the realm of semantics. The basic tenet of proof-theoretic semantics is that meaning is given by some rules of proofs, in terms of which all logical laws can be justified and the notion of logical consequence explained. In this paper an attempt will be made to (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Semantic Values for Natural Deduction Derivations.Göran Sundholm - 2006 - Synthese 148 (3):623-638.
    Drawing upon Martin-Löf’s semantic framework for his constructive type theory, semantic values are assigned also to natural-deduction derivations, while observing the crucial distinction between consequence among propositions and inference among judgements. Derivations in Gentzen’s format with derivable formulae dependent upon open assumptions, stand, it is suggested, for proof-objects, whereas derivations in Gentzen’s sequential format are proof-acts.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Identity and Sortals.Ansten Klev - 2017 - Erkenntnis 82 (1):1-16.
    According to the sortal conception of the universe of individuals every individual falls under a highest sortal, or category. It is argued here that on this conception the identity relation is defined between individuals a and b if and only if a and b fall under a common category. Identity must therefore be regarded as a relation of the form \, with three arguments x, y, and Z, where Z ranges over categories, and where the range of x and y (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Uniformly convex Banach spaces are reflexive—constructively.Douglas S. Bridges, Hajime Ishihara & Maarten McKubre-Jordens - 2013 - Mathematical Logic Quarterly 59 (4-5):352-356.
    We propose a natural definition of what it means in a constructive context for a Banach space to be reflexive, and then prove a constructive counterpart of the Milman-Pettis theorem that uniformly convex Banach spaces are reflexive.
    Download  
     
    Export citation  
     
    Bookmark  
  • Between constructive mathematics and PROLOG.Gerhard Jäger - 1991 - Archive for Mathematical Logic 30 (5-6):297-310.
    Download  
     
    Export citation  
     
    Bookmark  
  • Formal semantics in modern type theories with coercive subtyping.Zhaohui Luo - 2012 - Linguistics and Philosophy 35 (6):491-513.
    In the formal semantics based on modern type theories, common nouns are interpreted as types, rather than as predicates of entities as in Montague’s semantics. This brings about important advantages in linguistic interpretations but also leads to a limitation of expressive power because there are fewer operations on types as compared with those on predicates. The theory of coercive subtyping adequately extends the modern type theories and, as shown in this paper, plays a very useful role in making type theories (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • In Defense of Logical Universalism: Taking Issue with Jean van Heijenoort.Philippe Rouilhan - 2012 - Logica Universalis 6 (3-4):553-586.
    Van Heijenoort's main contribution to history and philosophy of modern logic was his distinction between two basic views of logic, first, the absolutist, or universalist, view of the founding fathers, Frege, Peano, and Russell, which dominated the first, classical period of history of modern logic, and, second, the relativist, or model-theoretic, view, inherited from Boole, Schröder, and Löwenheim, which has dominated the second, contemporary period of that history. In my paper, I present the man Jean van Heijenoort (Sect. 1); then (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Steps Towards a Proof-Theoretical Semantics.Enrico Moriconi - 2012 - Topoi 31 (1):67-75.
    The aim of this paper is to reconsider several proposals that have been put forward in order to develop a Proof-Theoretical Semantics, from the by now classical neo-verificationist approach provided by D. Prawitz and M. Dummett in the Seventies, to an alternative, more recent approach mainly due to the work of P. Schroeder-Heister and L. Hallnäs, based on clausal definitions. Some other intermediate proposals are very briefly sketched. Particular attention will be given to the role played by the so-called Fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Empirical Negation.Michael De - 2013 - Acta Analytica 28 (1):49-69.
    An extension of intuitionism to empirical discourse, a project most seriously taken up by Dummett and Tennant, requires an empirical negation whose strength lies somewhere between classical negation (‘It is unwarranted that. . . ’) and intuitionistic negation (‘It is refutable that. . . ’). I put forward one plausible candidate that compares favorably to some others that have been propounded in the literature. A tableau calculus is presented and shown to be strongly complete.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • “Inference versus consequence” revisited: inference, consequence, conditional, implication.Göran Sundholm - 2012 - Synthese 187 (3):943-956.
    Inference versus consequence , an invited lecture at the LOGICA 1997 conference at Castle Liblice, was part of a series of articles for which I did research during a Stockholm sabbatical in the autumn of 1995. The article seems to have been fairly effective in getting its point across and addresses a topic highly germane to the Uppsala workshop. Owing to its appearance in the LOGICA Yearbook 1997 , Filosofia Publishers, Prague, 1998, it has been rather inaccessible. Accordingly it is (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Dialogue structure and logical expressivism.Paul Piwek - 2011 - Synthese 183 (S1):33-58.
    This paper aims to develop the implications of logical expressivism for a theory of dialogue coherence. I proceed in three steps. Firstly, certain structural properties of cooperative dialogue are identified. Secondly, I describe a variant of the multi-agent natural deduction calculus that I introduced in Piwek (J Logic Lang Inf 16(4):403–421, 2007 ) and demonstrate how it accounts for the aforementioned structures. Thirdly, I examine how the aforementioned system can be used to formalise an expressivist account of logical vocabulary that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Proceeding in Abstraction. From Concepts to Types and the recent perspective on Information.Giuseppe Primiero - 2009 - History and Philosophy of Logic 30 (3):257-282.
    This article presents an historical and conceptual overview on different approaches to logical abstraction. Two main trends concerning abstraction in the history of logic are highlighted, starting from the logical notions of concept and function. This analysis strictly relates to the philosophical discussion on the nature of abstract objects. I develop this issue further with respect to the procedure of abstraction involved by (typed) λ-systems, focusing on the crucial change about meaning and predicability. In particular, the analysis of the nature (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A characterization of ML in many-sorted arithmetic with conditional application.M. D. G. Swaen - 1992 - Journal of Symbolic Logic 57 (3):924 - 953.
    In this paper we discuss an interpretation of intuitionistic type theory in many-sorted arithmetic with so-called conditional application. Via the formulas-as-types correspondence the arithmetical system in turn can be embedded in ML, resulting in a characterization of strong Σ-elimination by an axiom of conditional choice.
    Download  
     
    Export citation  
     
    Bookmark  
  • Recent advances in ordinal analysis: Π 21-CA and related systems.Michael Rathjen - 1995 - Bulletin of Symbolic Logic 1 (4):468 - 485.
    §1. Introduction. The purpose of this paper is, in general, to report the state of the art of ordinal analysis and, in particular, the recent success in obtaining an ordinal analysis for the system of -analysis, which is the subsystem of formal second order arithmetic, Z2, with comprehension confined to -formulae. The same techniques can be used to provide ordinal analyses for theories that are reducible to iterated -comprehension, e.g., -comprehension. The details will be laid out in [28].Ordinal-theoretic proof theory (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Constructive generalized quantifiers.Göran Sundholm - 1989 - Synthese 79 (1):1 - 12.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Knowledge of proofs.Peter Pagin - 1994 - Topoi 13 (2):93-100.
    If proofs are nothing more than truth makers, then there is no force in the standard argument against classical logic (there is no guarantee that there is either a proof forA or a proof fornot A). The standard intuitionistic conception of a mathematical proof is stronger: there are epistemic constraints on proofs. But the idea that proofs must be recognizable as such by us, with our actual capacities, is incompatible with the standard intuitionistic explanations of the meanings of the logical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Philosophical reflections on the foundations of mathematics.Jocelyne Couture & Joachim Lambek - 1991 - Erkenntnis 34 (2):187 - 209.
    This article was written jointly by a philosopher and a mathematician. It has two aims: to acquaint mathematicians with some of the philosophical questions at the foundations of their subject and to familiarize philosophers with some of the answers to these questions which have recently been obtained by mathematicians. In particular, we argue that, if these recent findings are borne in mind, four different basic philosophical positions, logicism, formalism, platonism and intuitionism, if stated with some moderation, are in fact reconcilable, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pretopologies and completeness proofs.Giovanni Sambin - 1995 - Journal of Symbolic Logic 60 (3):861-878.
    Pretopologies were introduced in [S], and there shown to give a complete semantics for a propositional sequent calculus BL, here called basic linear logic, as well as for its extensions by structural rules,ex falso quodlibetor double negation. Immediately after Logic Colloquium '88, a conversation with Per Martin-Löf helped me to see how the pretopology semantics should be extended to predicate logic; the result now is a simple and fully constructive completeness proof for first order BL and virtually all its extensions, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Developments in constructive nonstandard analysis.Erik Palmgren - 1998 - Bulletin of Symbolic Logic 4 (3):233-272.
    We develop a constructive version of nonstandard analysis, extending Bishop's constructive analysis with infinitesimal methods. A full transfer principle and a strong idealisation principle are obtained by using a sheaf-theoretic construction due to I. Moerdijk. The construction is, in a precise sense, a reduced power with variable filter structure. We avoid the nonconstructive standard part map by the use of nonstandard hulls. This leads to an infinitesimal analysis which includes nonconstructive theorems such as the Heine-Borel theorem, the Cauchy-Peano existence theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Canonical naming systems.Leon Horsten - 2004 - Minds and Machines 15 (2):229-257.
    This paper outlines a framework for the abstract investigation of the concept of canonicity of names and of naming systems. Degrees of canonicity of names and of naming systems are distinguished. The structure of the degrees is investigated, and a notion of relative canonicity is defined. The notions of canonicity are formally expressed within a Carnapian system of second-order modal logic.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Proof normalization modulo.Gilles Dowek & Benjamin Werner - 2003 - Journal of Symbolic Logic 68 (4):1289-1316.
    We define a generic notion of cut that applies to many first-order theories. We prove a generic cut elimination theorem showing that the cut elimination property holds for all theories having a so-called pre-model. As a corollary, we retrieve cut elimination for several axiomatic theories, including Church's simple type theory.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Univalent foundations as structuralist foundations.Dimitris Tsementzis - 2017 - Synthese 194 (9):3583-3617.
    The Univalent Foundations of Mathematics provide not only an entirely non-Cantorian conception of the basic objects of mathematics but also a novel account of how foundations ought to relate to mathematical practice. In this paper, I intend to answer the question: In what way is UF a new foundation of mathematics? I will begin by connecting UF to a pragmatist reading of the structuralist thesis in the philosophy of mathematics, which I will use to define a criterion that a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Proof theory and computer programming.Ruy J. G. B. de Queiroz & Thomas S. E. Maibaum - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (5):389-414.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Setting the Facts Straight.Mark Jago - 2011 - Journal of Philosophical Logic 40 (1):33-54.
    Substantial facts are not well-understood entities. Many philosophers object to their existence on this basis. Yet facts, if they can be understood, promise to do a lot of philosophical work: they can be used to construct theories of property possession and truthmaking, for example. Here, I give a formal theory of facts, including negative and logically complex facts. I provide a theory of reduction similar to that of the typed λ -calculus and use it to provide identity conditions for facts. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Constructing Situations and Time.Tim Fernando - 2011 - Journal of Philosophical Logic 40 (3):371 - 396.
    Situations serving as partial worlds as well as events in natural language semantics are constructed from a type-theoretic interpretation of firstorder formulae and (after a type reduction) temporal formulae. Limitations of the Russell-Wiener-Kamp derivation of time from events are discussed and overcome to give a more widely applicable account of temporal granularity. Finite situations are formulated as strings of observations, conceptualized to persist inertially (in the absence of forces).
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On constructing completions.Laura Crosilla, Hajime Ishihara & Peter Schuster - 2005 - Journal of Symbolic Logic 70 (3):969-978.
    The Dedekind cuts in an ordered set form a set in the sense of constructive Zermelo—Fraenkel set theory. We deduce this statement from the principle of refinement, which we distill before from the axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining properties of an ordering is needed, and only refinement for two—element coverings is used. In particular, the Dedekind reals form a set; whence we have also refined an earlier result by Aczel and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A structural investigation on formal topology: coreflection of formal covers and exponentiability.Maria Maietti & Silvio Valentini - 2004 - Journal of Symbolic Logic 69 (4):967-1005.
    We present and study the category of formal topologies and some of its variants. Two main results are proven. The first is that, for any inductively generated formal cover, there exists a formal topology whose cover extends in the minimal way the given one. This result is obtained by enhancing the method for the inductive generation of the cover relation by adding a coinductive generation of the positivity predicate. Categorically, this result can be rephrased by saying that inductively generated formal (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Propositions as games as types.Aarne Ranta - 1988 - Synthese 76 (3):377 - 395.
    Without violating the spirit of Game-Theoretical semantics, its results can be re-worked in Martin-Löf''s Constructive Type Theory by interpreting games as types of Myself''s winning strategies. The philosophical ideas behind Game-Theoretical Semantics in fact highly recommend restricting strategies to effective ones, which is the only controversial step in our interpretation. What is gained, then, is a direct connection between linguistic semantics and computer programming.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The assertion-candidate and the meaning of mood.Maria van der Schaar - 2007 - Synthese 159 (1):61-82.
    The meaning of a declarative sentence and that of an interrogative sentence differ in their aspect of mood. A semantics of mood has to account for the differences in meaning between these sentences, and it also has to explain that sentences in different moods may have a common core. The meaning of the declarative mood is to be explained not in terms of actual force (contra Dummett), but in terms of potential force. The meaning of the declarative sentence (including its (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Intuitionistic categorial grammar.Aarne Ranta - 1991 - Linguistics and Philosophy 14 (2):203 - 239.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Tychonoff's theorem in the framework of formal topologies.Sara Negri & Silvio Valentini - 1997 - Journal of Symbolic Logic 62 (4):1315-1332.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What is neologicism?Bernard Linsky & Edward N. Zalta - 2006 - Bulletin of Symbolic Logic 12 (1):60-99.
    In this paper, we investigate (1) what can be salvaged from the original project of "logicism" and (2) what is the best that can be done if we lower our sights a bit. Logicism is the view that "mathematics is reducible to logic alone", and there are a variety of reasons why it was a non-starter. We consider the various ways of weakening this claim so as to produce a "neologicism". Three ways are discussed: (1) expand the conception of logic (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the unusual effectiveness of logic in computer science.Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis, Moshe Y. Vardi & Victor Vianu - 2001 - Bulletin of Symbolic Logic 7 (2):213-236.
    In 1960, E. P. Wigner, a joint winner of the 1963 Nobel Prize for Physics, published a paper titled On the Unreasonable Effectiveness of Mathematics in the Natural Sciences [61]. This paper can be construed as an examination and affirmation of Galileo's tenet that “The book of nature is written in the language of mathematics”. To this effect, Wigner presented a large number of examples that demonstrate the effectiveness of mathematics in accurately describing physical phenomena. Wigner viewed these examples as (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Proof, Meaning and Paradox: Some Remarks.Luca Tranchini - 2019 - Topoi 38 (3):591-603.
    In the present paper, the Fregean conception of proof-theoretic semantics that I developed elsewhere will be revised so as to better reflect the different roles played by open and closed derivations. I will argue that such a conception can deliver a semantic analysis of languages containing paradoxical expressions provided some of its basic tenets are liberalized. In particular, the notion of function underlying the Brouwer–Heyting–Kolmogorov explanation of implication should be understood as admitting functions to be partial. As argued in previous (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Natural Language Inference in Coq.Stergios Chatzikyriakidis & Zhaohui Luo - 2014 - Journal of Logic, Language and Information 23 (4):441-480.
    In this paper we propose a way to deal with natural language inference by implementing Modern Type Theoretical Semantics in the proof assistant Coq. The paper is a first attempt to deal with NLI and natural language reasoning in general by using the proof assistant technology. Valid NLIs are treated as theorems and as such the adequacy of our account is tested by trying to prove them. We use Luo’s Modern Type Theory with coercive subtyping as the formal language into (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pretopologies and a uniform presentation of sup-lattices, quantales and frames.Giulia Battilotti & Giovanni Sambin - 2006 - Annals of Pure and Applied Logic 137 (1-3):30-61.
    We introduce the notion of infinitary preorder and use it to obtain a predicative presentation of sup-lattices by generators and relations. The method is uniform in that it extends in a modular way to obtain a presentation of quantales, as “sup-lattices on monoids”, by using the notion of pretopology.Our presentation is then applied to frames, the link with Johnstone’s presentation of frames is spelled out, and his theorem on freely generated frames becomes a special case of our results on quantales.The (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A minimalist two-level foundation for constructive mathematics.Maria Emilia Maietti - 2009 - Annals of Pure and Applied Logic 160 (3):319-354.
    We present a two-level theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin.One level is given by an intensional type theory, called Minimal type theory. This theory extends a previous version with collections.The other level is given by an extensional set theory that is interpreted in the first one by means of a quotient model.This two-level theory has two main features: it is minimal among the most relevant foundations for constructive mathematics; it is constructive thanks (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Offline and Online Data: on upgrading functional information to knowledge.Giuseppe Primiero - 2013 - Philosophical Studies 164 (2):371-392.
    This paper addresses the problem of upgrading functional information to knowledge. Functional information is defined as syntactically well-formed, meaningful and collectively opaque data. Its use in the formal epistemology of information theories is crucial to solve the debate on the veridical nature of information, and it represents the companion notion to standard strongly semantic information, defined as well-formed, meaningful and true data. The formal framework, on which the definitions are based, uses a contextual version of the verificationist principle of truth (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The logic of first order intuitionistic type theory with weak sigma- elimination.M. D. G. Swaen - 1991 - Journal of Symbolic Logic 56 (2):467-483.
    Via the formulas-as-types embedding certain extensions of Heyting Arithmetic can be represented in intuitionistic type theories. In this paper we discuss the embedding of ω-sorted Heyting Arithmetic HA ω into a type theory WL, that can be described as Troelstra's system ML 1 0 with so-called weak Σ-elimination rules. By syntactical means it is proved that a formula is derivable in HA ω if and only if its corresponding type in WL is inhabited. Analogous results are proved for Diller's so-called (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The independence of peano's fourth axiom from Martin-löf's type theory without universes.Jan M. Smith - 1988 - Journal of Symbolic Logic 53 (3):840-845.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A general formulation of simultaneous inductive-recursive definitions in type theory.Peter Dybjer - 2000 - Journal of Symbolic Logic 65 (2):525-549.
    The first example of a simultaneous inductive-recursive definition in intuitionistic type theory is Martin-Löf's universe á la Tarski. A set U 0 of codes for small sets is generated inductively at the same time as a function T 0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U 0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductive-recursive definition which is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From multisets to sets in homotopy type theory.Håkon Robbestad Gylterud - 2018 - Journal of Symbolic Logic 83 (3):1132-1146.
    Download  
     
    Export citation  
     
    Bookmark  
  • Type Theory and the Theory of Meaning: Towards an Intuitionistic View of Language.Hirofumi Saito - 2006 - Annals of the Japan Association for Philosophy of Science 14 (2):113-121.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Download  
     
    Export citation  
     
    Bookmark   6 citations