Switch to: References

Add citations

You must login to add citations.
  1. A constructive approach to nonstandard analysis.Erik Palmgren - 1995 - Annals of Pure and Applied Logic 73 (3):297-325.
    In the present paper we introduce a constructive theory of nonstandard arithmetic in higher types. The theory is intended as a framework for developing elementary nonstandard analysis constructively. More specifically, the theory introduced is a conservative extension of HAω + AC. A predicate for distinguishing standard objects is added as in Nelson's internal set theory. Weak transfer and idealisation principles are proved from the axioms. Finally, the use of the theory is illustrated by extending Bishop's constructive analysis with infinitesimals.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Some nonstandard methods applied to distributive lattices.Mai Gehrke, Matt Insall & Klaus Kaiser - 1990 - Mathematical Logic Quarterly 36 (2):123-131.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nonstandard Analysis in Topology: Nonstandard and Standard Compactifications.S. Salbany & Todor Todorov - 2000 - Journal of Symbolic Logic 65 (4):1836-1840.
    Let be a topological space and *X a nonstandard extension of X. Sets of the form *G, where G $\in$ T. form a base for the "standard" topology $^ST$ on *X. The topological space will be used to study compactifications of in a systematic way.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The shooting-room paradox and conditionalizing on measurably challenged sets.Paul Bartha & Christopher Hitchcock - 1999 - Synthese 118 (3):403-437.
    We provide a solution to the well-known “Shooting-Room” paradox, developed by John Leslie in connection with his Doomsday Argument. In the “Shooting-Room” paradox, the death of an individual is contingent upon an event that has a 1/36 chance of occurring, yet the relative frequency of death in the relevant population is 0.9. There are two intuitively plausible arguments, one concluding that the appropriate subjective probability of death is 1/36, the other that this probability is 0.9. How are these two values (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Infinitesimal chances and the laws of nature.Adam Elga - 2004 - Australasian Journal of Philosophy 82 (1):67 – 76.
    The 'best-system' analysis of lawhood [Lewis 1994] faces the 'zero-fit problem': that many systems of laws say that the chance of history going actually as it goes--the degree to which the theory 'fits' the actual course of history--is zero. Neither an appeal to infinitesimal probabilities nor a patch using standard measure theory avoids the difficulty. But there is a way to avoid it: replace the notion of 'fit' with the notion of a world being typical with respect to a theory.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Comparing the structures of mathematical objects.Isaac Wilhelm - 2021 - Synthese 199 (3-4):6357-6369.
    A popular method for comparing the structures of mathematical objects, which I call the ‘subset approach’, says that X has more structure than Y just in case X’s automorphisms form a proper subset of Y’s automorphisms. This approach is attractive, in part, because it seems to yield the right results in some comparisons of spacetime structure. But as I show, it yields the wrong results in a number of other cases. The problem is that the subset approach compares structure using (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reverse formalism 16.Sam Sanders - 2020 - Synthese 197 (2):497-544.
    In his remarkable paper Formalism 64, Robinson defends his eponymous position concerning the foundations of mathematics, as follows:Any mention of infinite totalities is literally meaningless.We should act as if infinite totalities really existed. Being the originator of Nonstandard Analysis, it stands to reason that Robinson would have often been faced with the opposing position that ‘some infinite totalities are more meaningful than others’, the textbook example being that of infinitesimals. For instance, Bishop and Connes have made such claims regarding infinitesimals, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Some nonstandard methods applied to distributive lattices.Mai Gehrke, Matt Insall & Klaus Kaiser - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (2):123-131.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Louveau's theorem for the descriptive set theory of internal sets.Kenneth Schilling & Bosko Zivaljevic - 1997 - Journal of Symbolic Logic 62 (2):595-607.
    We give positive answers to two open questions from [15]. (1) For every set C countably determined over A, if C is Π 0 α (Σ 0 α ) then it must be Π 0 α (Σ 0 α ) over A, and (2) every Borel subset of the product of two internal sets X and Y all of whose vertical sections are Π 0 α (Σ 0 α ) can be represented as an intersection (union) of Borel sets with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse Mathematics and parameter-free Transfer.Benno van den Berg & Sam Sanders - 2019 - Annals of Pure and Applied Logic 170 (3):273-296.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nonstandard Methods and Finiteness Conditions in Algebra.Matt Insall - 1991 - Mathematical Logic Quarterly 37 (33-35):525-532.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Erna and Friedman's reverse mathematics.Sam Sanders - 2011 - Journal of Symbolic Logic 76 (2):637 - 664.
    Elementary Recursive Nonstandard Analysis, in short ERNA, is a constructive system of nonstandard analysis with a PRA consistency proof, proposed around 1995 by Patrick Suppes and Richard Sommer. Recently, the author showed the consistency of ERNA with several transfer principles and proved results of nonstandard analysis in the resulting theories (see [12] and [13]). Here, we show that Weak König's lemma (WKL) and many of its equivalent formulations over RCA₀ from Reverse Mathematics (see [21] and [22]) can be 'pushed down' (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The three arrows of Zeno.Craig Harrison - 1996 - Synthese 107 (2):271 - 292.
    We explore the better known paradoxes of Zeno including modern variants based on infinite processes, from the point of view of standard, classical analysis, from which there is still much to learn (especially concerning the paradox of division), and then from the viewpoints of non-standard and non-classical analysis (the logic of the latter being intuitionist).The standard, classical or Cantorian notion of the continuum, modeled on the real number line, is well known, as is the definition of motion as the time (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Monadic binary relations and the monad systems at near-standard points.Nader Vakil - 1987 - Journal of Symbolic Logic 52 (3):689-697.
    Let ( * X, * T) be the nonstandard extension of a Hausdorff space (X, T). After Wattenberg [6], the monad m(x) of a near-standard point x in * X is defined as m(x) = μ T (st(x)). Consider the relation $R_{\mathrm{ns}} = \{\langle x, y \rangle \mid x, y \in \mathrm{ns} (^\ast X) \text{and} y \in m(x)\}.$ Frank Wattenberg in [6] and [7] investigated the possibilities of extending the domain of R ns to the whole of * X. Wattenberg's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Toward a rigorous quantum field theory.Stanley Gudder - 1994 - Foundations of Physics 24 (9):1205-1225.
    This paper outlines a framework that may provide a mathematically rigorous quantum field theory. The framework relies upon the methods of nonstandard analysis. A theory of nonstandard inner product spaces and operators on these spaces is first developed. This theory is then applied to construct nonstandard Fock spaces which extend the standard Fock spaces. Then a rigorous framework for the field operators of quantum field theory is presented. The results are illustrated for the case of Klein-Gordon fields.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hyperfinite law of large numbers.Yeneng Sun - 1996 - Bulletin of Symbolic Logic 2 (2):189-198.
    The Loeb space construction in nonstandard analysis is applied to the theory of processes to reveal basic phenomena which cannot be treated using classical methods. An asymptotic interpretation of results established here shows that for a triangular array (or a sequence) of random variables, asymptotic uncorrelatedness or asymptotic pairwise independence is necessary and sufficient for the validity of appropriate versions of the law of large numbers. Our intrinsic characterization of almost sure pairwise independence leads to the equivalence of various multiplicative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonstandard analysis and constructivism?Frank Wattenberg - 1988 - Studia Logica 47 (3):303 - 309.
    The purpose of this paper is to investigate some problems of using finite (or *finite) computational arguments and of the nonstandard notion of an infinitesimal. We will begin by looking at the canonical example illustrating the distinction between classical and constructive analysis, the Intermediate Value Theorem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (3 other versions)Internal approach to external sets and universes.Vladimir Kanovei & Michael Reeken - 1995 - Studia Logica 55 (2):347 - 376.
    In this article we show how the universe of BST, bounded set theory can be enlarged by definable subclasses of sets so that Separation and Replacement are true in the enlargement for all formulas, including those in which the standardness predicate may occur. Thus BST is strong enough to incorporate external sets in the internal universe in a way sufficient to develop topics in nonstandard analysis inaccessible in the framework of a purely internal approach, such as Loeb measures.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hyperalgebraic primitive elements for relational algebraic and topological algebraic models.Matt Insall - 1996 - Studia Logica 57 (2-3):409 - 418.
    Using nonstandard methods, we generalize the notion of an algebraic primitive element to that of an hyperalgebraic primitive element, and show that under mild restrictions, such elements can be found infinitesimally close to any given element of a topological field.
    Download  
     
    Export citation  
     
    Bookmark  
  • Flat sets.Arthur D. Grainger - 1994 - Journal of Symbolic Logic 59 (3):1012-1021.
    Let X be a set, and let $\hat{X} = \bigcup^\infty_{n = 0} X_n$ be the superstructure of X, where X 0 = X and X n + 1 = X n ∪ P(X n ) (P(X) is the power set of X) for n ∈ ω. The set X is called a flat set if and only if $X \neq \varnothing.\varnothing \not\in X.x \cap \hat X = \varnothing$ for each x ∈ X, and $x \cap \hat{y} = \varnothing$ for x.y (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The strength of compactness in Computability Theory and Nonstandard Analysis.Dag Normann & Sam Sanders - 2019 - Annals of Pure and Applied Logic 170 (11):102710.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the strength of nonstandard analysis.C. Ward Henson & H. Jerome Keisler - 1986 - Journal of Symbolic Logic 51 (2):377-386.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Bounded polynomials and holomorphic mappings between convex subrings of.Adel Khalfallah & Siegmund Kosarew - 2018 - Journal of Symbolic Logic 83 (1):372-384.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)An axiomatic presentation of the nonstandard methods in mathematics.Mauro Di Nasso - 2002 - Journal of Symbolic Logic 67 (1):315-325.
    A nonstandard set theory ∗ZFC is proposed that axiomatizes the nonstandard embedding ∗. Besides the usual principles of nonstandard analysis, all axioms of ZFC except regularity are assumed. A strong form of saturation is also postulated. ∗ZFC is a conservative extension of ZFC.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A logic for arguing about probabilities in measure teams.Tapani Hyttinen, Gianluca Paolini & Jouko Väänänen - 2017 - Archive for Mathematical Logic 56 (5-6):475-489.
    We use sets of assignments, a.k.a. teams, and measures on them to define probabilities of first-order formulas in given data. We then axiomatise first-order properties of such probabilities and prove a completeness theorem for our axiomatisation. We use the Hardy–Weinberg Principle of biology and the Bell’s Inequalities of quantum physics as examples.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Graphs with ∏ 1 0 (K)Y-sections.Boško Živaljević - 1993 - Archive for Mathematical Logic 32 (4):259-273.
    We prove that a Borel subset of the product of two internal setsX andY all of whoseY-sections are ∏ 1 0 (K)(∑ 1 0 (K)) sets is the intersection (union) of a countable sequence of Borel graphs with internalY-sections. As a consequence we prove some standard results about the domains of graphs in the product of two topological spaces all of whose horizontal section are compact (open) sets. A version of classical Vitali-Lusin theorem for those types of graphs is given (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Minimal axiomatic frameworks for definable hyperreals with transfer.Frederik S. Herzberg, Vladimir Kanovei, Mikhail Katz & Vassily Lyubetsky - 2018 - Journal of Symbolic Logic 83 (1):385-391.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Nonstandard methods in combinatorics and theoretical computer science.M. M. Richter & M. E. Szabo - 1988 - Studia Logica 47 (3):181 - 191.
    Download  
     
    Export citation  
     
    Bookmark  
  • The structure of graphs all of whose y-sections are internal sets.Boško Živaljević - 1991 - Journal of Symbolic Logic 56 (1):50-66.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Novel Tendency in Philosophical Logic.Andrew Schumann - 2008 - Studies in Logic, Grammar and Rhetoric 14 (27).
    Download  
     
    Export citation  
     
    Bookmark   1 citation