- The Oxford Handbook of Causal Reasoning.Michael Waldmann (ed.) - 2017 - Oxford, England: Oxford University Press.details
|
|
Emotion and decision-making: affect-driven belief systems in anxiety and depression.Martin P. Paulus & Angela J. Yu - 2012 - Trends in Cognitive Sciences 16 (9):476-483.details
|
|
Artificial intelligence and modern planned economies: a discussion on methods and institutions.Spyridon Samothrakis - forthcoming - AI and Society:1-12.details
|
|
Resource Rationality.Thomas F. Icard - manuscriptdetails
|
|
Knowledge representation and acquisition for ethical AI: challenges and opportunities.Vaishak Belle - 2023 - Ethics and Information Technology 25 (1):1-12.details
|
|
Artificial virtuous agents in a multi-agent tragedy of the commons.Jakob Stenseke - 2022 - AI and Society:1-18.details
|
|
Reward tampering problems and solutions in reinforcement learning: a causal influence diagram perspective.Tom Everitt, Marcus Hutter, Ramana Kumar & Victoria Krakovna - 2021 - Synthese 198 (Suppl 27):6435-6467.details
|
|
Decentralized MDPs with sparse interactions.Francisco S. Melo & Manuela Veloso - 2011 - Artificial Intelligence 175 (11):1757-1789.details
|
|
Minimax real-time heuristic search.Sven Koenig - 2001 - Artificial Intelligence 129 (1-2):165-197.details
|
|
Faster Teaching via POMDP Planning.Anna N. Rafferty, Emma Brunskill, Thomas L. Griffiths & Patrick Shafto - 2016 - Cognitive Science 40 (6):1290-1332.details
|
|
The Nature of Belief-Directed Exploratory Choice in Human Decision-Making.W. Bradley Knox, A. Ross Otto, Peter Stone & Bradley C. Love - 2011 - Frontiers in Psychology 2.details
|
|
“Guess what I'm doing”: Extending legibility to sequential decision tasks.Miguel Faria, Francisco S. Melo & Ana Paiva - 2024 - Artificial Intelligence 330 (C):104107.details
|
|
Simplified Risk-aware Decision Making with Belief-dependent Rewards in Partially Observable Domains.Andrey Zhitnikov & Vadim Indelman - 2022 - Artificial Intelligence 312 (C):103775.details
|
|
Representations for robot knowledge in the KnowRob framework.Moritz Tenorth & Michael Beetz - 2017 - Artificial Intelligence 247 (C):151-169.details
|
|
An affective mobile robot educator with a full-time job.Illah R. Nourbakhsh, Judith Bobenage, Sebastien Grange, Ron Lutz, Roland Meyer & Alvaro Soto - 1999 - Artificial Intelligence 114 (1-2):95-124.details
|
|
Optimal Behavior is Easier to Learn than the Truth.Ronald Ortner - 2016 - Minds and Machines 26 (3):243-252.details
|
|
Finding the optimal exploration-exploitation trade-off online through Bayesian risk estimation and minimization.Stewart Jamieson, Jonathan P. How & Yogesh Girdhar - 2024 - Artificial Intelligence 330 (C):104096.details
|
|
Autonomous agents modelling other agents: A comprehensive survey and open problems.Stefano V. Albrecht & Peter Stone - 2018 - Artificial Intelligence 258 (C):66-95.details
|
|
Conformant plans and beyond: Principles and complexity.Blai Bonet - 2010 - Artificial Intelligence 174 (3-4):245-269.details
|
|
Action understanding as inverse planning.Chris L. Baker, Rebecca Saxe & Joshua B. Tenenbaum - 2009 - Cognition 113 (3):329-349.details
|
|
Shared Representations as Coordination Tools for Interaction.Giovanni Pezzulo - 2011 - Review of Philosophy and Psychology 2 (2):303-333.details
|
|
A survey of inverse reinforcement learning: Challenges, methods and progress.Saurabh Arora & Prashant Doshi - 2021 - Artificial Intelligence 297 (C):103500.details
|
|
Recursively modeling other agents for decision making: A research perspective.Prashant Doshi, Piotr Gmytrasiewicz & Edmund Durfee - 2020 - Artificial Intelligence 279 (C):103202.details
|
|
Inferring the intentional states of autonomous virtual agents.Peter C. Pantelis, Chris L. Baker, Steven A. Cholewiak, Kevin Sanik, Ari Weinstein, Chia-Chien Wu, Joshua B. Tenenbaum & Jacob Feldman - 2014 - Cognition 130 (3):360-379.details
|
|
Probabilistic reasoning about epistemic action narratives.Fabio Aurelio D'Asaro, Antonis Bikakis, Luke Dickens & Rob Miller - 2020 - Artificial Intelligence 287 (C):103352.details
|
|
Partially observable Markov decision processes with imprecise parameters.Hideaki Itoh & Kiyohiko Nakamura - 2007 - Artificial Intelligence 171 (8-9):453-490.details
|
|
Risk-aware shielding of Partially Observable Monte Carlo Planning policies.Giulio Mazzi, Alberto Castellini & Alessandro Farinelli - 2023 - Artificial Intelligence 324 (C):103987.details
|
|
Approximability and efficient algorithms for constrained fixed-horizon POMDPs with durative actions.Majid Khonji - 2023 - Artificial Intelligence 323 (C):103968.details
|
|
Expanding horizons in reinforcement learning for curious exploration and creative planning.Dale Zhou & Aaron M. Bornstein - 2024 - Behavioral and Brain Sciences 47:e118.details
|
|
Rationalizing predictions by adversarial information calibration.Lei Sha, Oana-Maria Camburu & Thomas Lukasiewicz - 2023 - Artificial Intelligence 315 (C):103828.details
|
|
A dynamic epistemic framework for reasoning about conformant probabilistic plans.Yanjun Li, Barteld Kooi & Yanjing Wang - 2019 - Artificial Intelligence 268 (C):54-84.details
|
|
Robotic manipulation of multiple objects as a POMDP.Joni Pajarinen & Ville Kyrki - 2017 - Artificial Intelligence 247:213-228.details
|
|
An integrated approach to solving influence diagrams and finite-horizon partially observable decision processes.Eric A. Hansen - 2021 - Artificial Intelligence 294 (C):103431.details
|
|
POMDP-based control of workflows for crowdsourcing.Peng Dai, Christopher H. Lin, Mausam & Daniel S. Weld - 2013 - Artificial Intelligence 202 (C):52-85.details
|
|
Contingent planning under uncertainty via stochastic satisfiability.Stephen M. Majercik & Michael L. Littman - 2003 - Artificial Intelligence 147 (1-2):119-162.details
|
|
Knowledge-based programs as succinct policies for partially observable domains.Bruno Zanuttini, Jérôme Lang, Abdallah Saffidine & François Schwarzentruber - 2020 - Artificial Intelligence 288 (C):103365.details
|
|
Computing rank dependent utility in graphical models for sequential decision problems.Gildas Jeantet & Olivier Spanjaard - 2011 - Artificial Intelligence 175 (7-8):1366-1389.details
|
|
Analyzing generalized planning under nondeterminism.Vaishak Belle - 2022 - Artificial Intelligence 307 (C):103696.details
|
|
Epistemic uncertainty aware semantic localization and mapping for inference and belief space planning.Vladimir Tchuiev & Vadim Indelman - 2023 - Artificial Intelligence 319 (C):103903.details
|
|
Regression and progression in stochastic domains.Vaishak Belle & Hector J. Levesque - 2020 - Artificial Intelligence 281 (C):103247.details
|
|
Reasoning about uncertain parameters and agent behaviors through encoded experiences and belief planning.Akinobu Hayashi, Dirk Ruiken, Tadaaki Hasegawa & Christian Goerick - 2020 - Artificial Intelligence 280 (C):103228.details
|
|
A synthesis of automated planning and reinforcement learning for efficient, robust decision-making.Matteo Leonetti, Luca Iocchi & Peter Stone - 2016 - Artificial Intelligence 241 (C):103-130.details
|
|
Exploiting symmetries for single- and multi-agent Partially Observable Stochastic Domains.Byung Kon Kang & Kee-Eung Kim - 2012 - Artificial Intelligence 182-183 (C):32-57.details
|
|
From Knowledge-based Programs to Graded Belief-based Programs, Part I: On-line Reasoning.Noël Laverny & Jérôme Lang - 2005 - Synthese 147 (2):277-321.details
|
|
Common Bayesian Models for Common Cognitive Issues.Francis Colas, Julien Diard & Pierre Bessière - 2010 - Acta Biotheoretica 58 (2-3):191-216.details
|
|
Affect control processes: Intelligent affective interaction using a partially observable Markov decision process.Jesse Hoey, Tobias Schröder & Areej Alhothali - 2016 - Artificial Intelligence 230 (C):134-172.details
|
|
Geometric backtracking for combined task and motion planning in robotic systems.Julien Bidot, Lars Karlsson, Fabien Lagriffoul & Alessandro Saffiotti - 2017 - Artificial Intelligence 247 (C):229-265.details
|
|
A technical survey on statistical modelling and design methods for crowdsourcing quality control.Yuan Jin, Mark Carman, Ye Zhu & Yong Xiang - 2020 - Artificial Intelligence 287 (C):103351.details
|
|
Planning to see: A hierarchical approach to planning visual actions on a robot using POMDPs.Mohan Sridharan, Jeremy Wyatt & Richard Dearden - 2010 - Artificial Intelligence 174 (11):704-725.details
|
|
A conflict-directed approach to chance-constrained mixed logical linear programming.Cheng Fang & Brian C. Williams - 2023 - Artificial Intelligence 323 (C):103972.details
|
|