Switch to: References

Add citations

You must login to add citations.
  1. Against neuroclassicism: On the perils of armchair neuroscience.Alex Morgan - 2022 - Mind and Language 37 (3):329-355.
    Neuroclassicism is the view that cognition is explained by “classical” computing mechanisms in the nervous system that exhibit a clear demarcation between processing machinery and read–write memory. The psychologist C. R. Gallistel has mounted a sophisticated defense of neuroclassicism by drawing from ethology and computability theory to argue that animal brains necessarily contain read–write memory mechanisms. This argument threatens to undermine the “connectionist” orthodoxy in contemporary neuroscience, which does not seem to recognize any such mechanisms. In this paper I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explanatory completeness and idealization in large brain simulations: a mechanistic perspective.Marcin Miłkowski - 2016 - Synthese 193 (5):1457-1478.
    The claim defended in the paper is that the mechanistic account of explanation can easily embrace idealization in big-scale brain simulations, and that only causally relevant detail should be present in explanatory models. The claim is illustrated with two methodologically different models: Blue Brain, used for particular simulations of the cortical column in hybrid models, and Eliasmith’s SPAUN model that is both biologically realistic and able to explain eight different tasks. By drawing on the mechanistic theory of computational explanation, I (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • From Computer Metaphor to Computational Modeling: The Evolution of Computationalism.Marcin Miłkowski - 2018 - Minds and Machines 28 (3):515-541.
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Dynamical causes.Russell Meyer - 2020 - Biology and Philosophy 35 (5):1-21.
    Mechanistic explanations are often said to explain because they reveal the causal structure of the world. Conversely, dynamical models supposedly lack explanatory power because they do not describe causal structure. The only way for dynamical models to produce causal explanations is via the 3M criterion: the model must be mapped onto a mechanism. This framing of the situation has become the received view around the viability of dynamical explanation. In this paper, I argue against this position and show that dynamical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An explanatory taste for mechanisms.Russell Meyer - 2023 - Phenomenology and the Cognitive Sciences 22 (4):821-840.
    Mechanistic explanations, according to one prominent account, are derived from objective explanations (Craver 2007, 2014 ). Mechanistic standards of explanation are in turn pulled from nature, and are thereby insulated from the values of investigators, since explanation is an objectively defined achievement grounded in the causal structure of the world (Craver 2014 ). This results in the closure of mechanism’s explanatory standards—it is insulated from the values, norms and goals of investigators. I raise two problems with this position. First, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A weakened mechanism is still a mechanism: On the causal role of absences in mechanistic explanation.Alexander Mebius - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 45:43-48.
    Much contemporary debate on the nature of mechanisms centers on the issue of modulating negative causes. One type of negative causability, which I refer to as "causation by absence," appears difficult to incorporate into modern accounts of mechanistic explanation. This paper argues that a recent attempt to resolve this problem, proposed by Benjamin Barros, requires improvement as it overlooks the fact that not all absences qualify as sources of mechanism failure. I suggest that there are a number of additional types (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A weakened mechanism is still a mechanism: On the causal role of absences in mechanistic explanation.Alexander Mebius - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 45 (1):43-48.
    Much contemporary debate on the nature of mechanisms centers on the issue of modulating negative causes. One type of negative causability, which I refer to as “causation by absence,” appears difficult to incorporate into modern accounts of mechanistic explanation. This paper argues that a recent attempt to resolve this problem, proposed by Benjamin Barros, requires improvement as it overlooks the fact that not all absences qualify as sources of mechanism failure. I suggest that there are a number of additional types (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structures, dynamics and mechanisms in neuroscience: an integrative account.Holger Lyre - 2018 - Synthese 195 (12):5141-5158.
    Proponents of mechanistic explanations have recently proclaimed that all explanations in the neurosciences appeal to mechanisms. The purpose of the paper is to critically assess this statement and to develop an integrative account that connects a large range of both mechanistic and dynamical explanations. I develop and defend four theses about the relationship between dynamical and mechanistic explanations: that dynamical explanations are structurally grounded, that they are multiply realizable, possess realizing mechanisms and provide a powerful top-down heuristic. Four examples shall (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The mechanistic stance.Jonny Lee & Joe Dewhurst - 2021 - European Journal for Philosophy of Science 11 (1):1-21.
    It is generally acknowledged by proponents of ‘new mechanism’ that mechanistic explanation involves adopting a perspective, but there is less agreement on how we should understand this perspective-taking or what its implications are for practising science. This paper examines the perspectival nature of mechanistic explanation through the lens of the ‘mechanistic stance’, which falls somewhere between Dennett’s more familiar physical and design stance. We argue this approach implies three distinct and significant ways in which mechanistic explanation can be interpreted as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Model Explanation Versus Model-Induced Explanation.Insa Lawler & Emily Sullivan - 2021 - Foundations of Science 26 (4):1049-1074.
    Scientists appeal to models when explaining phenomena. Such explanations are often dubbed model explanations or model-based explanations. But what are the precise conditions for ME? Are ME special explanations? In our paper, we first rebut two definitions of ME and specify a more promising one. Based on this analysis, we single out a related conception that is concerned with explanations that are induced from working with a model. We call them ‘model-induced explanations’. Second, we study three paradigmatic cases of alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Vertical-horizontal distinction in resolving the abstraction, hierarchy, and generality problems of the mechanistic account of physical computation.Jesse Kuokkanen - 2022 - Synthese 200 (3):1-18.
    Descriptive abstraction means omission of information from descriptions of phenomena. In this paper, I introduce a distinction between vertical and horizontal descriptive abstraction. Vertical abstracts away levels of mechanism or organization, while horizontal abstracts away details within one level of organization. The distinction is implicit in parts of the literature, but it has received insufficient attention and gone mainly unnoticed. I suggest that the distinction can be used to clarify how computational descriptions are formed in some variants of the mechanistic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Making too many enemies: Hutto and Myin’s attack on computationalism.Jesse Kuokkanen & Anna-Mari Rusanen - 2018 - Philosophical Explorations 21 (2):282-294.
    We analyse Hutto & Myin's three arguments against computationalism [Hutto, D., E. Myin, A. Peeters, and F. Zahnoun. Forthcoming. “The Cognitive Basis of Computation: Putting Computation In Its Place.” In The Routledge Handbook of the Computational Mind, edited by M. Sprevak, and M. Colombo. London: Routledge.; Hutto, D., and E. Myin. 2012. Radicalizing Enactivism: Basic Minds Without Content. Cambridge, MA: MIT Press; Hutto, D., and E. Myin. 2017. Evolving Enactivism: Basic Minds Meet Content. Cambridge, MA: MIT Press]. The Hard Problem (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How and when are topological explanations complete mechanistic explanations? The case of multilayer network models.Beate Krickel, Leon de Bruin & Linda Douw - 2023 - Synthese 202 (1):1-21.
    The relationship between topological explanation and mechanistic explanation is unclear. Most philosophers agree that at least some topological explanations are mechanistic explanations. The crucial question is how to make sense of this claim. Zednik (Philos Psychol 32(1):23–51, 2019) argues that topological explanations are mechanistic if they (i) describe mechanism sketches that (ii) pick out organizational properties of mechanisms. While we agree with Zednik’s conclusion, we critically discuss Zednik’s account and show that it fails as a general account of how and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The topological realization.Daniel Kostić - 2018 - Synthese (1).
    In this paper, I argue that the newly developed network approach in neuroscience and biology provides a basis for formulating a unique type of realization, which I call topological realization. Some of its features and its relation to one of the dominant paradigms of realization and explanation in sciences, i.e. the mechanistic one, are already being discussed in the literature. But the detailed features of topological realization, its explanatory power and its relation to another prominent view of realization, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Mechanistic and topological explanations: an introduction.Daniel Kostić - 2018 - Synthese 195 (1).
    In the last 20 years or so, since the publication of a seminal paper by Watts and Strogatz :440–442, 1998), an interest in topological explanations has spread like a wild fire over many areas of science, e.g. ecology, evolutionary biology, medicine, and cognitive neuroscience. The topological approach is still very young by all standards, and even within special sciences it still doesn’t have a single methodological programme that is applicable across all areas of science. That is why this special issue (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Moving parts: the natural alliance between dynamical and mechanistic modeling approaches.David Michael Kaplan - 2015 - Biology and Philosophy 30 (6):757-786.
    Recently, it has been provocatively claimed that dynamical modeling approaches signal the emergence of a new explanatory framework distinct from that of mechanistic explanation. This paper rejects this proposal and argues that dynamical explanations are fully compatible with, even naturally construed as, instances of mechanistic explanations. Specifically, it is argued that the mathematical framework of dynamics provides a powerful descriptive scheme for revealing temporal features of activities in mechanisms and plays an explanatory role to the extent it is deployed for (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Market crashes as critical phenomena? Explanation, idealization, and universality in econophysics.Jennifer Jhun, Patricia Palacios & James Owen Weatherall - 2018 - Synthese 195 (10):4477-4505.
    We study the Johansen–Ledoit–Sornette model of financial market crashes :219–255, 2000). On our view, the JLS model is a curious case from the perspective of the recent philosophy of science literature, as it is naturally construed as a “minimal model” in the sense of Batterman and Rice :349–376, 2014) that nonetheless provides a causal explanation of market crashes, in the sense of Woodward’s interventionist account of causation.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Models, robustness, and non-causal explanation: a foray into cognitive science and biology.Elizabeth Irvine - 2015 - Synthese 192 (12):3943-3959.
    This paper is aimed at identifying how a model’s explanatory power is constructed and identified, particularly in the practice of template-based modeling (Humphreys, Philos Sci 69:1–11, 2002; Extending ourselves: computational science, empiricism, and scientific method, 2004), and what kinds of explanations models constructed in this way can provide. In particular, this paper offers an account of non-causal structural explanation that forms an alternative to causal–mechanical accounts of model explanation that are currently popular in philosophy of biology and cognitive science. Clearly, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Cognitive dynamical models as minimal models.Travis Holmes - 2021 - Synthese 199 (1):2353-2373.
    The debate over the explanatory nature of cognitive models has been waged mostly between two factions: the mechanists and the dynamical systems theorists. The former hold that cognitive models are explanatory only if they satisfy a set of mapping criteria, particularly the 3M/3m* requirement. The latter have argued, pace the mechanists, that some cognitive models are both dynamical and constitute covering-law explanations. In this paper, I provide a minimal model interpretation of dynamical cognitive models, arguing that this both provides needed (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cognitive extra-mathematical explanations.Travis Holmes - 2022 - Synthese 200 (2):1-23.
    This paper advances the view that some explanations in cognitive science are extra-mathematical explanations. Demonstrating the plausibility of this interpretation centers around certain efficient coding cases which ineliminably enlist information theoretic laws, facts and theorems to identify in-principle, mathematical constraints on neuronal information processing capacities. The explanatory structure in these cases is shown to parallel other putative instances of mathematical explanation. The upshot for cognitive mathematical explanations is thus two-fold: first, the view capably rebuts standard mechanistic objections to non-mechanistic explanation; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • When No Laughing Matter Is No Laughing Matter: The Challenges in Developing a Cognitive Theory of Humor.Eric Hochstein - 2021 - The Philosophy of Humor Yearbook 2 (1):87-110.
    This paper explores the current obstacles that a cognitive theory of humor faces. More specifically, I argue that the nebulous and ill-defined nature of humor makes it difficult to tell what counts as clear instances of, and deficits in, the phenomenon.Without getting clear on this, we cannot identify the underlying cognitive mechanisms responsible for humor. Moreover, being too quick to draw generalizations regarding the ubiquity of humor, or its uniqueness to humans, without substantially clarifying the phenomenon and its occurrences is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • One mechanism, many models: a distributed theory of mechanistic explanation.Eric Hochstein - 2016 - Synthese 193 (5):1387-1407.
    There have been recent disagreements in the philosophy of neuroscience regarding which sorts of scientific models provide mechanistic explanations, and which do not. These disagreements often hinge on two commonly adopted, but conflicting, ways of understanding mechanistic explanations: what I call the “representation-as” account, and the “representation-of” account. In this paper, I argue that neither account does justice to neuroscientific practice. In their place, I offer a new alternative that can defuse some of these disagreements. I argue that individual models (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Function, selection, and construction in the brain.Justin Garson - 2012 - Synthese 189 (3):451-481.
    A common misunderstanding of the selected effects theory of function is that natural selection operating over an evolutionary time scale is the only functionbestowing process in the natural world. This construal of the selected effects theory conflicts with the existence and ubiquity of neurobiological functions that are evolutionary novel, such as structures underlying reading ability. This conflict has suggested to some that, while the selected effects theory may be relevant to some areas of evolutionary biology, its relevance to neuroscience is (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On the neural enrichment of economic models: recasting the challenge.Roberto Fumagalli - 2017 - Biology and Philosophy 32 (2):201-220.
    In a recent article in this Journal, Fumagalli argues that economists are provisionally justified in resisting prominent calls to integrate neural variables into economic models of choice. In other articles, various authors engage with Fumagalli’s argument and try to substantiate three often-made claims concerning neuroeconomic modelling. First, the benefits derivable from neurally informing some economic models of choice do not involve significant tractability costs. Second, neuroeconomic modelling is best understood within Marr’s three-level of analysis framework for information-processing systems. And third, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Integrating computation into the mechanistic hierarchy in the cognitive and neural sciences.Lotem Elber-Dorozko & Oron Shagrir - 2019 - Synthese 199 (Suppl 1):43-66.
    It is generally accepted that, in the cognitive and neural sciences, there are both computational and mechanistic explanations. We ask how computational explanations can integrate into the mechanistic hierarchy. The problem stems from the fact that implementation and mechanistic relations have different forms. The implementation relation, from the states of an abstract computational system to the physical, implementing states is a homomorphism mapping relation. The mechanistic relation, however, is that of part/whole; the explaining features in a mechanistic explanation are the (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Manipulation is key: on why non-mechanistic explanations in the cognitive sciences also describe relations of manipulation and control.Lotem Elber-Dorozko - 2018 - Synthese 195 (12):5319-5337.
    A popular view presents explanations in the cognitive sciences as causal or mechanistic and argues that an important feature of such explanations is that they allow us to manipulate and control the explanandum phenomena. Nonetheless, whether there can be explanations in the cognitive sciences that are neither causal nor mechanistic is still under debate. Another prominent view suggests that both causal and non-causal relations of counterfactual dependence can be explanatory, but this view is open to the criticism that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explanation in Biology: An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences.P.-A. Braillard and C. Malaterre (ed.) - 2015 - Springer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computation in physical systems.Gualtiero Piccinini - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Un análisis crítico de la concepción mecanicista de la explicación.Sergio Daniel Barberis - 2012 - Revista Latinoamericana de Filosofia 38 (2):233-265.
    En este trabajo me propongo desarrollar un estudio crítico de la concepción mecanicista de la explicación científica. En primer lugar, argumento que la caracterización mecanicista de los modelos fenoménicos (no explicativos) es inadecuada, pues no ofrece un análisis aceptable de los conceptos de modelo científico y similitud, que son fundamentales para la propuesta. En segundo lugar, sostengo que la caracterización de los modelos mecanicistas (explicativos) es igualmente inadecuada, pues los análisis disponibles de la relación explicativa de relevancia constitutiva implican una (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reconciling New Mechanism and Psychological Explanation: A Pragmatic Approach.Michael De Vivo - unknown
    Recently, Gualtiero Piccinini and Carl Craver have argued that functional analyses in psychology lack explanatory autonomy from explanations in neuroscience. In this thesis I argue against this claim by motivating and defending a pragmatic-epistemic conception of autonomous psychological explanation. I argue that this conception of autonomy need not require that functional analyses be distinct in kind from neural-mechanistic explanations. I use the framework of Bas van Fraassen’s Pragmatic Theory of Explanation to show that explanations in psychology and neuroscience can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Biopsychologiczne podstawy poznania geometrycznego.Mateusz Hohol - 2018 - Philosophical Problems in Science 64:137-165.
    In this review-paper, I focus on biopsychological foundations of geometric cognition. Starting from the Kant’s views on mathematics, I attempt to show that contemporary cognitive scientists, alike the famous philosopher, recognize mutual relationships of visuospatial processing and geometric cognition. What I defend is a claim that Tinbergen’s explanatory questions are the most fruitful tool for explaining our “hardwired,” and thus shared with other animals, Euclidean intuitions, which manifest themselves in spatial navigation and shape recognition. I claim, however, that these “hardwired (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Integrating Philosophy of Understanding with the Cognitive Sciences.Kareem Khalifa, Farhan Islam, J. P. Gamboa, Daniel Wilkenfeld & Daniel Kostić - 2022 - Frontiers in Systems Neuroscience 16.
    We provide two programmatic frameworks for integrating philosophical research on understanding with complementary work in computer science, psychology, and neuroscience. First, philosophical theories of understanding have consequences about how agents should reason if they are to understand that can then be evaluated empirically by their concordance with findings in scientific studies of reasoning. Second, these studies use a multitude of explanations, and a philosophical theory of understanding is well suited to integrating these explanations in illuminating ways.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explanation in Neurobiology: An Interventionist Perspective.James Woodward - unknown
    This paper employs an interventionist framework to elucidate some issues having to do with explanation in neurobiology and with the differences between mechanistic and non-mechanistic explanations.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Wiring optimization explanation in neuroscience: What is Special about it?Sergio Daniel Barberis - 2019 - Theoria : An International Journal for Theory, History and Fundations of Science 1 (34):89-110.
    This paper examines the explanatory distinctness of wiring optimization models in neuroscience. Wiring optimization models aim to represent the organizational features of neural and brain systems as optimal (or near-optimal) solutions to wiring optimization problems. My claim is that that wiring optimization models provide design explanations. In particular, they support ideal interventions on the decision variables of the relevant design problem and assess the impact of such interventions on the viability of the target system.
    Download  
     
    Export citation  
     
    Bookmark  
  • Solely Generic Phenomenology.Ned Block - 2015 - Open MIND 2015.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Multiple Realization, Levels and Mechanisms.Sergio Daniel Barberis - 2017 - Teorema: International Journal of Philosophy 36 (2):53-68.
    This paper focuses on the framework for the compositional relations of properties in the sciences, or "realization relations", offered by Ken Aizawa and Carl Gillett (A&G) in a series of papers, and in particular on the analysis of "multiple realizations" they build upon it. I argue that A&G's analysis of multiple realization requires an account of levels and I try to show, then, that the A&G framework is not successful under any of the extant accounts of levels. There is consequently (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Situatedness and Embodiment of Computational Systems.Marcin Miłkowski - 2017 - Entropy 19 (4):162.
    In this paper, the role of the environment and physical embodiment of computational systems for explanatory purposes will be analyzed. In particular, the focus will be on cognitive computational systems, understood in terms of mechanisms that manipulate semantic information. It will be argued that the role of the environment has long been appreciated, in particular in the work of Herbert A. Simon, which has inspired the mechanistic view on explanation. From Simon’s perspective, the embodied view on cognition seems natural but (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are Systems Neuroscience Explanations Mechanistic?Carlos Zednik - unknown
    Whereas most branches of neuroscience are thought to provide mechanistic explanations, systems neuroscience is not. Two reasons are traditionally cited in support of this conclusion. First, systems neuroscientists rarely, if ever, rely on the dual strategies of decomposition and localization. Second, they typically emphasize organizational properties over the properties of individual components. In this paper, I argue that neither reason is conclusive: researchers might rely on alternative strategies for mechanism discovery, and focusing on organization is often appropriate and consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Heuristics, Descriptions, and the Scope of Mechanistic Explanation.Carlos Zednik - 2015 - In P. Braillard & C. Malaterre (eds.), Explanation in Biology. An Enquiry into the Diversity of Explanatory Patterns in the Life Sciences. Dordrecht: Springer. pp. 295-318.
    The philosophical conception of mechanistic explanation is grounded on a limited number of canonical examples. These examples provide an overly narrow view of contemporary scientific practice, because they do not reflect the extent to which the heuristic strategies and descriptive practices that contribute to mechanistic explanation have evolved beyond the well-known methods of decomposition, localization, and pictorial representation. Recent examples from evolutionary robotics and network approaches to biology and neuroscience demonstrate the increasingly important role played by computer simulations and mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Functional Analyses, Mechanistic Explanations, and Explanatory Tradeoffs.Sergio Daniel Barberis - 2013 - Journal of Cognitive Science 14:229-251.
    Recently, Piccinini and Craver have stated three theses concerning the relations between functional analysis and mechanistic explanation in cognitive sciences: No Distinctness: functional analysis and mechanistic explanation are explanations of the same kind; Integration: functional analysis is a kind of mechanistic explanation; and Subordination: functional analyses are unsatisfactory sketches of mechanisms. In this paper, I argue, first, that functional analysis and mechanistic explanations are sub-kinds of explanation by scientific (idealized) models. From that point of view, we must take into account (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Phase Transitions: A Challenge for Reductionism?Patricia Palacios - unknown
    In this paper, I analyze the extent to which classical phase transitions, especially continuous phase transitions, impose a challenge for reduction- ism. My main contention is that classical phase transitions are compatible with reduction, at least with the notion of limiting reduction, which re- lates the behavior of physical quantities in different theories under certain limiting conditions. I argue that this conclusion follows even after rec- ognizing the existence of two infinite limits involved in the treatment of continuous phase transitions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations