Switch to: References

Add citations

You must login to add citations.
  1. The Ontic-Epistemic Debates of Explanation Revisited: The Three-Dimensional Approach.Jinyeong Gim - 2024 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 74:99-169.
    After Wesley Salmon’s causal-mechanical stance on explanation in the 1980s, the ontic-epistemic debate of scientific explanations appeared to be resolved in the philosophy of science. However, since the twenty-first century, this debate has been rekindled among philosophers who focus on mechanistic explanations. Nevertheless, its issues have evolved, necessitating scrutiny of the new trends in this debate and a comparison with the original controversy between Carl Hempel and Salmon. The primary objective of this paper is to elucidate three categorical dimensions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation versus Understanding: On Two Roles of Dynamical Systems Theory in Extended Cognition Research.Katarzyna Kuś & Krzysztof Wójtowicz - forthcoming - Foundations of Science:1-26.
    It is widely believed that mathematics carries a substantial part of the explanatory burden in science. However, mathematics can also play important heuristic roles of a different kind, being a source of new ideas and approaches, allowing us to build toy models, enhancing expressive power and providing fruitful conceptualizations. In this paper, we focus on the application of dynamical systems theory (DST) within the extended cognition (EC) field of cognitive science, considering this case study to be a good illustration of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mechanistic and topological explanations in medicine: the case of medical genetics and network medicine.Marie Darrason - 2018 - Synthese 195 (1):147-173.
    Medical explanations have often been thought on the model of biological ones and are frequently defined as mechanistic explanations of a biological dysfunction. In this paper, I argue that topological explanations, which have been described in ecology or in cognitive sciences, can also be found in medicine and I discuss the relationships between mechanistic and topological explanations in medicine, through the example of network medicine and medical genetics. Network medicine is a recent discipline that relies on the analysis of various (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Are More Details Better? On the Norms of Completeness for Mechanistic Explanations.Carl F. Craver & David M. Kaplan - 2020 - British Journal for the Philosophy of Science 71 (1):287-319.
    Completeness is an important but misunderstood norm of explanation. It has recently been argued that mechanistic accounts of scientific explanation are committed to the thesis that models are complete only if they describe everything about a mechanism and, as a corollary, that incomplete models are always improved by adding more details. If so, mechanistic accounts are at odds with the obvious and important role of abstraction in scientific modelling. We respond to this characterization of the mechanist’s views about abstraction and (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Return of the math: Markov blankets, dynamical systems theory, and the bounds of mind.Lincoln John Colling - 2022 - Behavioral and Brain Sciences 45:e190.
    Bruineberg and colleagues highlight work using Markov blankets to demarcate the bounds of the mind. This echoes earlier attempts to demarcate the bounds of the mind from a dynamical systems perspective. Advocates of mechanistic explanation have challenged the dynamical approach to independently motivate the application of the formalism, a challenge that Markov blanket theorists must also meet.
    Download  
     
    Export citation  
     
    Bookmark  
  • Neural representationalism, the Hard Problem of Content and vitiated verdicts. A reply to Hutto & Myin.Matteo Colombo - 2014 - Phenomenology and the Cognitive Sciences 13 (2):257-274.
    Colombo’s (Phenomenology and the Cognitive Sciences, 2013) plea for neural representationalism is the focus of a recent contribution to Phenomenology and Cognitive Science by Daniel D. Hutto and Erik Myin. In that paper, Hutto and Myin have tried to show that my arguments fail badly. Here, I want to respond to their critique clarifying the type of neural representationalism put forward in my (Phenomenology and the Cognitive Sciences, 2013) piece, and to take the opportunity to make a few remarks of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • First principles in the life sciences: the free-energy principle, organicism, and mechanism.Matteo Colombo & Cory Wright - 2021 - Synthese 198 (14):3463–3488.
    The free-energy principle states that all systems that minimize their free energy resist a tendency to physical disintegration. Originally proposed to account for perception, learning, and action, the free-energy principle has been applied to the evolution, development, morphology, anatomy and function of the brain, and has been called a postulate, an unfalsifiable principle, a natural law, and an imperative. While it might afford a theoretical foundation for understanding the relationship between environment, life, and mind, its epistemic status is unclear. Also (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Experimental Philosophy of Explanation Rising: The Case for a Plurality of Concepts of Explanation.Matteo Colombo - 2017 - Cognitive Science 41 (2):503-517.
    This paper brings together results from the philosophy and the psychology of explanation to argue that there are multiple concepts of explanation in human psychology. Specifically, it is shown that pluralism about explanation coheres with the multiplicity of models of explanation available in the philosophy of science, and it is supported by evidence from the psychology of explanatory judgment. Focusing on the case of a norm of explanatory power, the paper concludes by responding to the worry that if there is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Prediction versus understanding in computationally enhanced neuroscience.Mazviita Chirimuuta - 2020 - Synthese 199 (1-2):767-790.
    The use of machine learning instead of traditional models in neuroscience raises significant questions about the epistemic benefits of the newer methods. I draw on the literature on model intelligibility in the philosophy of science to offer some benchmarks for the interpretability of artificial neural networks used as a predictive tool in neuroscience. Following two case studies on the use of ANN’s to model motor cortex and the visual system, I argue that the benefit of providing the scientist with understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Explanation in Computational Neuroscience: Causal and Non-causal.M. Chirimuuta - 2018 - British Journal for the Philosophy of Science 69 (3):849-880.
    This article examines three candidate cases of non-causal explanation in computational neuroscience. I argue that there are instances of efficient coding explanation that are strongly analogous to examples of non-causal explanation in physics and biology, as presented by Batterman, Woodward, and Lange. By integrating Lange’s and Woodward’s accounts, I offer a new way to elucidate the distinction between causal and non-causal explanation, and to address concerns about the explanatory sufficiency of non-mechanistic models in neuroscience. I also use this framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Stuck in between. Phenomenology’s Explanatory Dilemma and its Role in Experimental Practice.Mark-Oliver Casper & Philipp Haueis - 2023 - Phenomenology and the Cognitive Sciences 22 (3):575-598.
    Questions about phenomenology’s role in non-philosophical disciplines gained renewed attention. While we claim that phenomenology makes indispensable, unique contributions to different domains of scientific practice such as concept formation, experimental design, and data collection, we also contend that when it comes to explanation, phenomenological approaches face a dilemma. Either phenomenological attempts to explain conscious phenomena do not satisfy a central constraint on explanations, i.e. the asymmetry between explanans and explanandum, or they satisfy this explanatory asymmetry only by largely merging with (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mechanisms, laws and explanation.Nancy Cartwright, John Pemberton & Sarah Wieten - 2020 - European Journal for Philosophy of Science 10 (3):1-19.
    Mechanisms are now taken widely in philosophy of science to provide one of modern science’s basic explanatory devices. This has raised lively debate concerning the relationship between mechanisms, laws and explanation. This paper focuses on cases where a mechanism gives rise to a ceteris paribus law, addressing two inter-related questions: What kind of explanation is involved? and What is going on in the world when mechanism M affords behavior B described in a ceteris paribus law? We explore various answers offered (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mechanisms and the problem of abstract models.Natalia Carrillo & Tarja Knuuttila - 2023 - European Journal for Philosophy of Science 13 (3):1-19.
    New mechanical philosophy posits that explanations in the life sciences involve the decomposition of a system into its entities and their respective activities and organization that are responsible for the explanandum phenomenon. This mechanistic account of explanation has proven problematic in its application to mathematical models, leading the mechanists to suggest different ways of aligning abstract models with the mechanist program. Initially, the discussion centered on whether the Hodgkin-Huxley model is explanatory. Network models provided another complication, as they apply to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanatory organization and psychiatric resilience: Challenges to a mechanistic approach to mental disorders.Raffaella Campaner - 2020 - Rivista Internazionale di Filosofia e Psicologia 11 (1):128-144.
    : This contribution aims to address epistemological issues at the crossroads of philosophy of science and psychiatry by reflecting on the notions of organization and resilience. Referring to the debate on the notion of “organization” and its explanatory relevance in philosophical neo-mechanistic theories, I consider how such positions hold up when tentatively applied to the mental health context. More specifically, I show how reflections on psychiatric resilience, cognitive reserve, and accommodation strategies challenge attempts to embrace a mechanistic perspective on mental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Getting over Atomism: Functional Decomposition in Complex Neural Systems.Daniel C. Burnston - 2021 - British Journal for the Philosophy of Science 72 (3):743-772.
    Functional decomposition is an important goal in the life sciences, and is central to mechanistic explanation and explanatory reduction. A growing literature in philosophy of science, however, has challenged decomposition-based notions of explanation. ‘Holists’ posit that complex systems exhibit context-sensitivity, dynamic interaction, and network dependence, and that these properties undermine decomposition. They then infer from the failure of decomposition to the failure of mechanistic explanation and reduction. I argue that complexity, so construed, is only incompatible with one notion of decomposition, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Data graphs and mechanistic explanation.Daniel C. Burnston - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 57 (C):1-12.
    It is a widespread assumption in philosophy of science that data is what is explained by theory—that data itself is not explanatory. I draw on instances of representational and explanatory practice from mammalian chronobiology to suggest that this assumption is unsustainable. In many instances, biologists employ representations of data in explanatory ways that are not reducible to constraints on or evidence for representations of mechanisms. Data graphs are used to exemplify relationships between quantities in the mechanism, and often these representations (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Functional kinds: a skeptical look.Cameron Buckner - 2015 - Synthese 192 (12):3915-3942.
    The functionalist approach to kinds has suffered recently due to its association with law-based approaches to induction and explanation. Philosophers of science increasingly view nomological approaches as inappropriate for the special sciences like psychology and biology, which has led to a surge of interest in approaches to natural kinds that are more obviously compatible with mechanistic and model-based methods, especially homeostatic property cluster theory. But can the functionalist approach to kinds be weaned off its dependency on laws? Dan Weiskopf has (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks.Cameron Buckner - 2018 - Synthese (12):1-34.
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Minimal model explanations of cognition.Nick Brancazio & Russell Meyer - 2023 - European Journal for Philosophy of Science 13 (41):1-25.
    Active materials are self-propelled non-living entities which, in some circumstances, exhibit a number of cognitively interesting behaviors such as gradient-following, avoiding obstacles, signaling and group coordination. This has led to scientific and philosophical discussion of whether this may make them useful as minimal models of cognition (Hanczyc, 2014; McGivern, 2019). Batterman and Rice (2014) have argued that what makes a minimal model explanatory is that the model is ultimately in the same universality class as the target system, which underpins why (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The cognitive neuroscience revolution.Worth Boone & Gualtiero Piccinini - 2016 - Synthese 193 (5):1509-1534.
    We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • The Joint Account of Mechanistic Explanation.Melinda Bonnie Fagan - 2012 - Philosophy of Science 79 (4):448-472.
    Many explanations in molecular biology, neuroscience, and other fields of experimental biology describe mechanisms underlying phenomena of interest. These mechanistic explanations account for higher-level phenomena in terms of causally active parts and their spatiotemporal organization. What makes such a mechanistic description explanatory? The best-developed answer, Craver's causal-mechanical account, has several weaknesses. It does not fully explicate the target of explanation, interlevel relation, or interactive nonmodular character of many biological mechanisms as we understand them. An alternative account of MEx, emphasizing interdependence (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Fiction As a Vehicle for Truth: Moving Beyond the Ontic Conception.Alisa Bokulich - 2016 - The Monist 99 (3):260-279.
    Despite widespread evidence that fictional models play an explanatory role in science, resistance remains to the idea that fictions can explain. A central source of this resistance is a particular view about what explanations are, namely, the ontic conception of explanation. According to the ontic conception, explanations just are the concrete entities in the world. I argue this conception is ultimately incoherent and that even a weaker version of the ontic conception fails. Fictional models can succeed in offering genuine explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Understanding endogenously active mechanisms: A scientific and philosophical challenge. [REVIEW]William Bechtel - 2012 - European Journal for Philosophy of Science 2 (2):233-248.
    Abstract Although noting the importance of organization in mechanisms, the new mechanistic philosophers of science have followed most biologists in focusing primarily on only the simplest mode of organization in which operations are envisaged as occurring sequentially. Increasingly, though, biologists are recognizing that the mechanisms they confront are non-sequential and the operations nonlinear. To understand how such mechanisms function through time, they are turning to computational models and tools of dynamical systems theory. Recent research on circadian rhythms addressing both intracellular (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Mapping the continuum of research strategies.Matthew Baxendale - 2019 - Synthese 196 (11):4711-4733.
    Contemporary philosophy of science has seen a growing trend towards a focus on scientific practice over the epistemic outputs that such practices produce. This practice-oriented approach has yielded a clearer understanding of how reductive research strategies play a central role in contemporary scientific inquiry. In parallel, a growing body of work has sought to explore the role of non-reductive, or systems-level, research strategies. As a result, the relationship between reductive and non-reductive scientific practices is becoming of increased importance. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Minimal Model Explanations.Robert W. Batterman & Collin C. Rice - 2014 - Philosophy of Science 81 (3):349-376.
    This article discusses minimal model explanations, which we argue are distinct from various causal, mechanical, difference-making, and so on, strategies prominent in the philosophical literature. We contend that what accounts for the explanatory power of these models is not that they have certain features in common with real systems. Rather, the models are explanatory because of a story about why a class of systems will all display the same large-scale behavior because the details that distinguish them are irrelevant. This story (...)
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • Mental machines.David L. Barack - 2019 - Biology and Philosophy 34 (6):63.
    Cognitive neuroscientists are turning to an increasingly rich array of neurodynamical systems to explain mental phenomena. In these explanations, cognitive capacities are decomposed into a set of functions, each of which is described mathematically, and then these descriptions are mapped on to corresponding mathematical descriptions of the dynamics of neural systems. In this paper, I outline a novel explanatory schema based on these explanations. I then argue that these explanations present a novel type of dynamicism for the philosophy of mind (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mental machines.David L. Barack - 2019 - Biology and Philosophy 34 (6):63.
    Cognitive neuroscientists are turning to an increasingly rich array of neurodynamical systems to explain mental phenomena. In these explanations, cognitive capacities are decomposed into a set of functions, each of which is described mathematically, and then these descriptions are mapped on to corresponding mathematical descriptions of the dynamics of neural systems. In this paper, I outline a novel explanatory schema based on these explanations. I then argue that these explanations present a novel type of dynamicism for the philosophy of mind (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mental machines.David L. Barack - 2019 - Biology and Philosophy 34 (6):63.
    Cognitive neuroscientists are turning to an increasingly rich array of neurodynamical systems to explain mental phenomena. In these explanations, cognitive capacities are decomposed into a set of functions, each of which is described mathematically, and then these descriptions are mapped on to corresponding mathematical descriptions of the dynamics of neural systems. In this paper, I outline a novel explanatory schema based on these explanations. I then argue that these explanations present a novel type of dynamicism for the philosophy of mind (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mental kinematics: dynamics and mechanics of neurocognitive systems.David L. Barack - 2020 - Synthese 199 (1-2):1091-1123.
    Dynamical systems play a central role in explanations in cognitive neuroscience. The grounds for these explanations are hotly debated and generally fall under two approaches: non-mechanistic and mechanistic. In this paper, I first outline a neurodynamical explanatory schema that highlights the role of dynamical systems in cognitive phenomena. I next explore the mechanistic status of such neurodynamical explanations. I argue that these explanations satisfy only some of the constraints on mechanistic explanation and should be considered pseudomechanistic explanations. I defend this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Functional analysis and mechanistic explanation.David Barrett - 2014 - Synthese 191 (12):2695-2714.
    Piccinini and Craver (Synthese 183:283–311, 2011) argue for the surprising view that psychological explanation, properly understood, is a species of mechanistic explanation. This contrasts with the ‘received view’ (due, primarily, to Cummins and Fodor) which maintains a sharp distinction between psychological explanation and mechanistic explanation. The former is typically construed as functional analysis, the analysis of some psychological capacity into an organized series of subcapacities without specifying any of the structural features that underlie the explanandum capacity. The latter idea, of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Cajal’s Law of Dynamic Polarization: Mechanism and Design.Sergio Daniel Barberis - 2018 - Philosophies 3 (2):11.
    Santiago Ramón y Cajal, the primary architect of the neuron doctrine and the law of dynamic polarization, is considered to be the founder of modern neuroscience. At the same time, many philosophers, historians, and neuroscientists agree that modern neuroscience embodies a mechanistic perspective on the explanation of the nervous system. In this paper, I review the extant mechanistic interpretation of Cajal’s contribution to modern neuroscience. Then, I argue that the extant mechanistic interpretation fails to capture the explanatory import of Cajal’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The ontology of organisms: Mechanistic modules or patterned processes?Christopher J. Austin - 2016 - Biology and Philosophy 31 (5):639-662.
    Though the realm of biology has long been under the philosophical rule of the mechanistic magisterium, recent years have seen a surprisingly steady rise in the usurping prowess of process ontology. According to its proponents, theoretical advances in the contemporary science of evo-devo have afforded that ontology a particularly powerful claim to the throne: in that increasingly empirically confirmed discipline, emergently autonomous, higher-order entities are the reigning explanantia. If we are to accept the election of evo-devo as our best conceptualisation (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • La indispensabilidad de las leyes en ciencias cognitivas.Sergio Daniel Barberis Almirón - 2021 - Sophia. Colección de Filosofía de la Educación 30:95-123.
    Partiendo de la distinción filosófica entre las leyes de la ciencia y las leyes de la naturaleza, en el presente artículo se defiende la indispensabilidad explicativa de las leyes de la ciencia en el campo de las ciencias cognitivas. Se sostiene que las leyes de la ciencia desempeñan un papel epistémico indispensable tanto en el análisis funcional como en la explicación mecanicista de las capacidades cognitivas. De esta manera, se ofrece una elucidación plausible del poder explicativo de las ciencias cognitivas (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Anatomy’s role in mechanistic explanations of organism behaviour.Aliya R. Dewey - 2024 - Synthese 203 (5):1-32.
    Explanations in behavioural neuroscience are often said to be mechanistic in the sense that they explain an organism’s behaviour by describing the activities and organisation of the organism’s parts that are “constitutively relevant” to organism behaviour. Much has been said about the constitutive relevance of working parts (in debates about the so-called “mutual manipulability criterion”), but relatively little has been said about the constitutive relevance of the organising relations between working parts. Some New Mechanists seem to endorse a simple causal-linking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Philosophy of Neuroscience.Bickle John, Mandik Peter & Anthony Landreth - 2012 - In Peter Adamson (ed.), Stanford Encyclopedia of Philosophy. Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Searching for Noncausal Explanations in a Sea of Causes.Alisa Bokulich - 2018 - In Alexander Reutlinger & Juha Saatsi (eds.), Explanation Beyond Causation: Philosophical Perspectives on Non-Causal Explanations. Oxford, United Kingdom: Oxford University Press.
    In the spirit of explanatory pluralism, this chapter argues that causal and noncausal explanations of a phenomenon are compatible, each being useful for bringing out different sorts of insights. After reviewing a model-based account of scientific explanation, which can accommodate causal and noncausal explanations alike, an important core conception of noncausal explanation is identified. This noncausal form of model-based explanation is illustrated using the example of how Earth scientists in a subfield known as aeolian geomorphology are explaining the formation of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophie der Neurowissenschaften.Holger Lyre - 2017 - In Simon Lohse & Thomas Reydon (eds.), Grundriss Wissenschaftsphilosophie. Die Philosophien der Einzelwissenschaften. Hamburg: Meiner.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mechanisms in Cognitive Science.Carlos Zednik - 2017 - In Stuart Glennan & Phyllis McKay Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge. pp. 389-400.
    This chapter subsumes David Marr’s levels of analysis account of explanation in cognitive science under the framework of mechanistic explanation: Answering the questions that define each one of Marr’s three levels is tantamount to describing the component parts and operations of mechanisms, as well as their organization, behavior, and environmental context. By explicating these questions and showing how they are answered in several different cognitive science research programs, this chapter resolves some of the ambiguities that remain in Marr’s account, and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Systems Biology and Mechanistic Explanation.Ingo Brigandt, Sara Green & Maureen O'Malley - 2017 - In Stuart Glennan & Phyllis McKay Illari (eds.), The Routledge Handbook of Mechanisms and Mechanical Philosophy. Routledge. pp. 362-374.
    We address the question of whether and to what extent explanatory and modelling strategies in systems biology are mechanistic. After showing how dynamic mathematical models are actually required for mechanistic explanations of complex systems, we caution readers against expecting all systems biology to be about mechanistic explanations. Instead, the aim may be to generate topological explanations that are not standardly mechanistic, or to arrive at design principles that explain system organization and behaviour in general, but not specific mechanisms. These abstraction (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Neuroepigenetics in Philosophical Focus: A Critical Analysis of the Philosophy of Mechanisms.Antonella Tramacere & John Bickle - 2024 - Biological Theory 19 (1):56-71.
    Epigenetics investigates the dynamics of gene expression in various cells, and the signals from the internal and external environment affecting these dynamics. Neuroepigenetics extends this research into neurons and glia cells. Environmental-induced changes in gene expression are not only associated with the emerging structure and function of the nervous system during ontogeny, but are also fundamental to the wiring of neural circuitries responsible for learning and memory. Yet philosophers of science and neuroscience have so far paid little attention to these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Structure of Sensorimotor Explanation.Alfredo Vernazzani - 2018 - Synthese (11):4527-4553.
    The sensorimotor theory of vision and visual consciousness is often described as a radical alternative to the computational and connectionist orthodoxy in the study of visual perception. However, it is far from clear whether the theory represents a significant departure from orthodox approaches or whether it is an enrichment of it. In this study, I tackle this issue by focusing on the explanatory structure of the sensorimotor theory. I argue that the standard formulation of the theory subscribes to the same (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Models and mechanisms in network neuroscience.Carlos Zednik - 2018 - Philosophical Psychology 32 (1):23-51.
    This paper considers the way mathematical and computational models are used in network neuroscience to deliver mechanistic explanations. Two case studies are considered: Recent work on klinotaxis by Caenorhabditis elegans, and a longstanding research effort on the network basis of schizophrenia in humans. These case studies illustrate the various ways in which network, simulation and dynamical models contribute to the aim of representing and understanding network mechanisms in the brain, and thus, of delivering mechanistic explanations. After outlining this mechanistic construal (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Revisiting abstraction and idealization: how not to criticize mechanistic explanation in molecular biology.Martin Zach - 2022 - European Journal for Philosophy of Science 12 (1):1-20.
    Abstraction and idealization are the two notions that are most often discussed in the context of assumptions employed in the process of model building. These notions are also routinely used in philosophical debates such as that on the mechanistic account of explanation. Indeed, an objection to the mechanistic account has recently been formulated precisely on these grounds: mechanists cannot account for the common practice of idealizing difference-making factors in models in molecular biology. In this paper I revisit the debate and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • II—James Woodward: Mechanistic Explanation: Its Scope and Limits.James Woodward - 2013 - Aristotelian Society Supplementary Volume 87 (1):39-65.
    This paper explores the question of whether all or most explanations in biology are, or ideally should be, ‘mechanistic’. I begin by providing an account of mechanistic explanation, making use of the interventionist ideas about causation I have developed elsewhere. This account emphasizes the way in which mechanistic explanations, at least in the biological sciences, integrate difference‐making and spatio‐temporal information, and exhibit what I call fine‐tunedness of organization. I also emphasize the role played by modularity conditions in mechanistic explanation. I (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Is the brain an organ for free energy minimisation?Daniel Williams - 2022 - Philosophical Studies 179 (5):1693-1714.
    Two striking claims are advanced on behalf of the free energy principle in cognitive science and philosophy: that it identifies a condition of the possibility of existence for self-organising systems; and that it has important implications for our understanding of how the brain works, defining a set of process theories—roughly, theories of the structure and functions of neural mechanisms—consistent with the free energy minimising imperative that it derives as a necessary feature of all self-organising systems. I argue that the conjunction (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From symbols to icons: the return of resemblance in the cognitive neuroscience revolution.Daniel Williams & Lincoln Colling - 2018 - Synthese 195 (5):1941-1967.
    We argue that one important aspect of the “cognitive neuroscience revolution” identified by Boone and Piccinini :1509–1534. doi: 10.1007/s11229-015-0783-4, 2015) is a dramatic shift away from thinking of cognitive representations as arbitrary symbols towards thinking of them as icons that replicate structural characteristics of their targets. We argue that this shift has been driven both “from below” and “from above”—that is, from a greater appreciation of what mechanistic explanation of information-processing systems involves, and from a greater appreciation of the problems (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Autonomy, Freedom & Embodiment: Hegel's Critique of Contemporary Biologism.Kenneth R. Westphal - 2014 - Hegel Bulletin 35 (1):56-83.
    The apparent implications of the latest findings of the life sciences for our freedom and autonomy are both exciting and controversial: They undermine a common view of human freedom: a fundamentally Cartesian view. A superior account of our freedom was developed by Kant and Hegel. Key features of Hegel's account show that we can expect from the life sciences further insights into the biological basis of our freedom and autonomy, but not their repudiation. I begin with basic features of Cartesian (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Static-Dynamic Hybridity in Dynamical Models of Cognition.Naftali Weinberger & Colin Allen - 2022 - Philosophy of Science 89 (2):283-301.
    Dynamical models of cognition have played a central role in recent cognitive science. In this paper, we consider a common strategy by which dynamical models describe their target systems neither as purely static nor as purely dynamic, but rather using a hybrid approach. This hybridity reveals how dynamical models involve representational choices that are important for understanding the relationship between dynamical and non-dynamical representations of a system.
    Download  
     
    Export citation  
     
    Bookmark   1 citation