Switch to: References

Add citations

You must login to add citations.
  1. Computability of fraïssé limits.Barbara F. Csima, Valentina S. Harizanov, Russell Miller & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (1):66 - 93.
    Fraïssé studied countable structures S through analysis of the age of S i.e., the set of all finitely generated substructures of S. We investigate the effectiveness of his analysis, considering effectively presented lists of finitely generated structures and asking when such a list is the age of a computable structure. We focus particularly on the Fraïssé limit. We also show that degree spectra of relations on a sufficiently nice Fraïssé limit are always upward closed unless the relation is definable by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Π 1 1 relations and paths through.Sergey Goncharov, Valentina Harizanov, Julia Knight & Richard Shore - 2004 - Journal of Symbolic Logic 69 (2):585-611.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Computable categoricity of trees of finite height.Steffen Lempp, Charles McCoy, Russell Miller & Reed Solomon - 2005 - Journal of Symbolic Logic 70 (1):151-215.
    We characterize the structure of computably categorical trees of finite height, and prove that our criterion is both necessary and sufficient. Intuitively, the characterization is easiest to express in terms of isomorphisms of (possibly infinite) trees, but in fact it is equivalent to a Σ03-condition. We show that all trees which are not computably categorical have computable dimension ω. Finally, we prove that for every n≥ 1 in ω, there exists a computable tree of finite height which is δ0n+1-categorical but (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Π₁¹ Relations and Paths through ᵊ.Sergey S. Goncharov, Valentina S. Harizanov, Julia F. Knight & Richard A. Shore - 2004 - Journal of Symbolic Logic 69 (2):585 - 611.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Degree spectra of relations on computable structures in the presence of Δ20 isomorphisms.Denis R. Hirschfeldt - 2002 - Journal of Symbolic Logic 67 (2):697-720.
    We give some new examples of possible degree spectra of invariant relations on Δ 0 2 -categorical computable structures, which demonstrate that such spectra can be fairly complicated. On the other hand, we show that there are nontrivial restrictions on the sets of degrees that can be realized as degree spectra of such relations. In particular, we give a sufficient condition for a relation to have infinite degree spectrum that implies that every invariant computable relation on a Δ 0 2 (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The computable dimension of trees of infinite height.Russell Miller - 2005 - Journal of Symbolic Logic 70 (1):111-141.
    We prove that no computable tree of infinite height is computably categorical, and indeed that all such trees have computable dimension ω. Moreover, this dimension is effectively ω, in the sense that given any effective listing of computable presentations of the same tree, we can effectively find another computable presentation of it which is not computably isomorphic to any of the presentations on the list.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A computably categorical structure whose expansion by a constant has infinite computable dimension.Denis Hirschfeldt, Bakhadyr Khoussainov & Richard Shore - 2003 - Journal of Symbolic Logic 68 (4):1199-1241.
    Cholak, Goncharov, Khoussainov, and Shore [1] showed that for each k > 0 there is a computably categorical structure whose expansion by a constant has computable dimension k. We show that the same is true with k replaced by ω. Our proof uses a version of Goncharov's method of left and right operations.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Degree spectra of intrinsically C.e. Relations.Denis Hirschfeldt - 2001 - Journal of Symbolic Logic 66 (2):441-469.
    We show that for every c.e. degree a > 0 there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is {0, a}. This result can be extended in two directions. First we show that for every uniformly c.e. collection of sets S there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is the set of degrees of elements of S. Then we show that if α ∈ (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Degree spectra of relations on structures of finite computable dimension.Denis R. Hirschfeldt - 2002 - Annals of Pure and Applied Logic 115 (1-3):233-277.
    We show that for every computably enumerable degree a > 0 there is an intrinsically c.e. relation on the domain of a computable structure of computable dimension 2 whose degree spectrum is { 0 , a } , thus answering a question of Goncharov and Khoussainov 55–57). We also show that this theorem remains true with α -c.e. in place of c.e. for any α∈ω∪{ω} . A modification of the proof of this result similar to what was done in Hirschfeldt (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Prime models of finite computable dimension.Pavel Semukhin - 2009 - Journal of Symbolic Logic 74 (1):336-348.
    We study the following open question in computable model theory: does there exist a structure of computable dimension two which is the prime model of its first-order theory? We construct an example of such a structure by coding a certain family of c.e. sets with exactly two one-to-one computable enumerations into a directed graph. We also show that there are examples of such structures in the classes of undirected graphs, partial orders, lattices, and integral domains.
    Download  
     
    Export citation  
     
    Bookmark  
  • 1998–99 Annual Meeting of the Association for Symbolic Logic.Sam Buss - 1999 - Bulletin of Symbolic Logic 5 (3):395-421.
    Download  
     
    Export citation  
     
    Bookmark  
  • Degree spectra and computable dimensions in algebraic structures.Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore & Arkadii M. Slinko - 2002 - Annals of Pure and Applied Logic 115 (1-3):71-113.
    Whenever a structure with a particularly interesting computability-theoretic property is found, it is natural to ask whether similar examples can be found within well-known classes of algebraic structures, such as groups, rings, lattices, and so forth. One way to give positive answers to this question is to adapt the original proof to the new setting. However, this can be an unnecessary duplication of effort, and lacks generality. Another method is to code the original structure into a structure in the given (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Degree spectra of relations on computable structures.Denis R. Hirschfeldt - 2000 - Bulletin of Symbolic Logic 6 (2):197-212.
    There has been increasing interest over the last few decades in the study of the effective content of Mathematics. One field whose effective content has been the subject of a large body of work, dating back at least to the early 1960s, is model theory. Several different notions of effectiveness of model-theoretic structures have been investigated. This communication is concerned withcomputablestructures, that is, structures with computable domains whose constants, functions, and relations are uniformly computable.In model theory, we identify isomorphic structures. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Effective categoricity of equivalence structures.Wesley Calvert, Douglas Cenzer, Valentina Harizanov & Andrei Morozov - 2006 - Annals of Pure and Applied Logic 141 (1):61-78.
    We investigate effective categoricity of computable equivalence structures . We show that is computably categorical if and only if has only finitely many finite equivalence classes, or has only finitely many infinite classes, bounded character, and at most one finite k such that there are infinitely many classes of size k. We also prove that all computably categorical structures are relatively computably categorical, that is, have computably enumerable Scott families of existential formulas. Since all computable equivalence structures are relatively categorical, (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • On the complexity of categoricity in computable structures.Walker M. White - 2003 - Mathematical Logic Quarterly 49 (6):603.
    We investigate the computational complexity the class of Γ-categorical computable structures. We show that hyperarithmetic categoricity is Π11-complete, while computable categoricity is Π04-hard.
    Download  
     
    Export citation  
     
    Bookmark   6 citations