Switch to: References

Add citations

You must login to add citations.
  1. Unwarranted philosophical assumptions in research on ANS.John Opfer, Richard Samuels, Stewart Shapiro & Eric Snyder - 2021 - Behavioral and Brain Sciences 44.
    Clarke and Beck import certain assumptions about the nature of numbers. Although these are widespread within research on number cognition, they are highly contentious among philosophers of mathematics. In this commentary, we isolate and critically evaluate one core assumption: the identity thesis.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Intuition as a second window.Nenad Miscevic - 2000 - Southern Journal of Philosophy 38 (S1):87-112.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The roots of contemporary Platonism.Penelope Maddy - 1989 - Journal of Symbolic Logic 54 (4):1121-1144.
    Though many working mathematicians embrace a rough and ready form of Platonism, that venerable position has suffered a checkered philosophical career. Indeed the three schools of thought with which most of us began our official philosophizing about mathematics—Intuitionism, Formalism, and Logicism—all stand in fundamental disagreement with Platonism. Nevertheless, various versions of Platonistic thinking survive in contemporary philosophical circles. The aim of this paper is to describe these views, and, as my title suggests, to trace their roots.I'll begin with some preliminary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Science nominalized.Terence Horgan - 1984 - Philosophy of Science 51 (4):529-549.
    I propose a way of formulating scientific laws and magnitude attributions which eliminates ontological commitment to mathematical entities. I argue that science only requires quantitative sentences as thus formulated, and hence that we ought to deny the existence of sets and numbers. I argue that my approach cannot plausibly be extended to the concrete "theoretical" entities of science.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Necessity, Certainty, and the A Priori.Albert Casullo - 1988 - Canadian Journal of Philosophy 18 (1):43-66.
    Empiricist theories of knowledge are attractive for they offer the prospect of a unitary theory of knowledge based on relatively well understood physiological and cognitive processes. Mathematical knowledge, however, has been a traditional stumbling block for such theories. There are three primary features of mathematical knowledge which have led epistemologists to the conclusion that it cannot be accommodated within an empiricist framework: 1) mathematical propositions appear to be immune from empirical disconfirmation; 2) mathematical propositions appear to be known with certainty; (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Number Concepts: An Interdisciplinary Inquiry.Richard Samuels & Eric Snyder - 2024 - Cambridge University Press.
    This Element, written for researchers and students in philosophy and the behavioral sciences, reviews and critically assesses extant work on number concepts in developmental psychology and cognitive science. It has four main aims. First, it characterizes the core commitments of mainstream number cognition research, including the commitment to representationalism, the hypothesis that there exist certain number-specific cognitive systems, and the key milestones in the development of number cognition. Second, it provides a taxonomy of influential views within mainstream number cognition research, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Knowledge of Abstract Objects in Physics and Mathematics.Michael J. Shaffer - 2017 - Acta Analytica 32 (4):397-409.
    In this paper a parallel is drawn between the problem of epistemic access to abstract objects in mathematics and the problem of epistemic access to idealized systems in the physical sciences. On this basis it is argued that some recent and more traditional approaches to solving these problems are problematic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Some Recent Existential Appeals to Mathematical Experience.Michael J. Shaffer - 2006 - Principia: An International Journal of Epistemology 10 (2):143–170.
    Some recent work by philosophers of mathematics has been aimed at showing that our knowledge of the existence of at least some mathematical objects and/or sets can be epistemically grounded by appealing to perceptual experience. The sensory capacity that they refer to in doing so is the ability to perceive numbers, mathematical properties and/or sets. The chief defense of this view as it applies to the perception of sets is found in Penelope Maddy’s Realism in Mathematics, but a number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • God and Abstract Objects: The Coherence of Theism: Aseity.William Lane Craig - 2017 - Cham: Springer.
    This book is an exploration and defense of the coherence of classical theism’s doctrine of divine aseity in the face of the challenge posed by Platonism with respect to abstract objects. A synoptic work in analytic philosophy of religion, the book engages discussions in philosophy of mathematics, philosophy of language, metaphysics, and metaontology. It addresses absolute creationism, non-Platonic realism, fictionalism, neutralism, and alternative logics and semantics, among other topics. The book offers a helpful taxonomy of the wide range of options (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Objects and objectivity : Alternatives to mathematical realism.Ebba Gullberg - 2011 - Dissertation, Umeå Universitet
    This dissertation is centered around a set of apparently conflicting intuitions that we may have about mathematics. On the one hand, we are inclined to believe that the theorems of mathematics are true. Since many of these theorems are existence assertions, it seems that if we accept them as true, we also commit ourselves to the existence of mathematical objects. On the other hand, mathematical objects are usually thought of as abstract objects that are non-spatiotemporal and causally inert. This makes (...)
    Download  
     
    Export citation  
     
    Bookmark