Switch to: References

Add citations

You must login to add citations.
  1. Non-deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
    Although all mathematical truths are necessary, mathematicians take certain combinations of mathematical truths to be ‘coincidental’, ‘accidental’, or ‘fortuitous’. The notion of a ‘ mathematical coincidence’ has so far failed to receive sufficient attention from philosophers. I argue that a mathematical coincidence is not merely an unforeseen or surprising mathematical result, and that being a misleading combination of mathematical facts is neither necessary nor sufficient for qualifying as a mathematical coincidence. I argue that although the components of a mathematical coincidence (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Mathematical Explanations: An Analysis Via Formal Proofs and Conceptual Complexity.Francesca Poggiolesi - 2024 - Philosophia Mathematica 32 (2):145-176.
    This paper studies internal (or intra-)mathematical explanations, namely those proofs of mathematical theorems that seem to explain the theorem they prove. The goal of the paper is a rigorous analysis of these explanations. This will be done in two steps. First, we will show how to move from informal proofs of mathematical theorems to a formal presentation that involves proof trees, together with a decomposition of their elements; secondly we will show that those mathematical proofs that are regarded as having (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Husserl’s Theory of Scientific Explanation: A Bolzanian Inspired Unificationist Account.Heath Williams & Thomas Byrne - 2022 - Husserl Studies 38 (2):171-196.
    Husserl’s early picture of explanation in the sciences has never been completely provided. This lack represents an oversight, which we here redress. In contrast to currently accepted interpretations, we demonstrate that Husserl does not adhere to the much maligned deductive-nomological (DN) model of scientific explanation. Instead, via a close reading of early Husserlian texts, we reveal that he presents a unificationist account of scientific explanation. By doing so, we disclose that Husserl’s philosophy of scientific explanation is no mere anachronism. It (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explicação Matemática.Eduardo Castro - 2020 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    Opinionated state of the art paper on mathematical explanation. After a general introduction to the subject, the paper is divided into two parts. The first part is dedicated to intra-mathematical explanation and the second is dedicated to extra-mathematical explanation. Each of these parts begins to present a set of diverse problems regarding each type of explanation and, afterwards, it analyses relevant models of the literature. Regarding the intra-mathematical explanation, the models of deformable proofs, mathematical saliences and the demonstrative structure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Prelude to dimension theory: The geometrical investigations of Bernard Bolzano.Dale M. Johnson - 1977 - Archive for History of Exact Sciences 17 (3):261-295.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Prova, Explicação e Intuição em Bernard Bolzano.Humberto de Assis Clímaco - 2008 - Anais Do XII Encontro Brasileiro de Pós Graduação Em Educação Matemática.
    Download  
     
    Export citation  
     
    Bookmark  
  • Peano's axioms in their historical context.Michael Segre - 1994 - Archive for History of Exact Sciences 48 (3-4):201-342.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • (1 other version)Teaching and Learning Guide for: Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    This is a teaching and learning guide to accompany "Explanation in Mathematics: Proofs and Practice".
    Download  
     
    Export citation  
     
    Bookmark  
  • Preuves par excellence.Jacques Dubucs & Sandra Lapointe - 2003 - Philosophiques 30 (1):219-234.
    Bolzano fut le premier philosophe à établir une distinction explicite entre les procédés déductifs qui nous permettent de parvenir à la certitude d’une vérité et ceux qui fournissent son fondement objectif. La conception que Bolzano se fait du rapport entre ce que nous appelons ici, d’une part, « conséquence subjective », à savoir la relation de raison à conséquence épistémique et, d’autre part, la « conséquence objective », c’est-à-dire la fondation , suggère toutefois que Bolzano défendait une conception « explicativiste (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proofs and pictures.James Robert Brown - 1997 - British Journal for the Philosophy of Science 48 (2):161-180.
    Everyone appreciates a clever mathematical picture, but the prevailing attitude is one of scepticism: diagrams, illustrations, and pictures prove nothing; they are psychologically important and heuristically useful, but only a traditional verbal/symbolic proof provides genuine evidence for a purported theorem. Like some other recent writers (Barwise and Etchemendy [1991]; Shin [1994]; and Giaquinto [1994]) I take a different view and argue, from historical considerations and some striking examples, for a positive evidential role for pictures in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Classical logic without bivalence.Tor Sandqvist - 2009 - Analysis 69 (2):211-218.
    Semantic justifications of the classical rules of logical inference typically make use of a notion of bivalent truth, understood as a property guaranteed to attach to a sentence or its negation regardless of the prospects for speakers to determine it as so doing. For want of a convincing alternative account of classical logic, some philosophers suspicious of such recognition-transcending bivalence have seen no choice but to declare classical deduction unwarranted and settle for a weaker system; intuitionistic logic in particular, buttressed (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • In defence of explanatory realism.Stefan Roski - 2021 - Synthese 199 (5-6):14121-14141.
    Explanatory realism is the view that explanations work by providing information about relations of productive determination such as causation or grounding. The view has gained considerable popularity in the last decades, especially in the context of metaphysical debates about non-causal explanation. What makes the view particularly attractive is that it fits nicely with the idea that not all explanations are causal whilst avoiding an implausible pluralism about explanation. Another attractive feature of the view is that it allows explanation to be (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why proofs by mathematical induction are generally not explanatory.Marc Lange - 2009 - Analysis 69 (2):203-211.
    Philosophers who regard some mathematical proofs as explaining why theorems hold, and others as merely proving that they do hold, disagree sharply about the explanatory value of proofs by mathematical induction. I offer an argument that aims to resolve this conflict of intuitions without making any controversial presuppositions about what mathematical explanations would be.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Intuitions about mathematical beauty: A case study in the aesthetic experience of ideas.Samuel G. B. Johnson & Stefan Steinerberger - 2019 - Cognition 189 (C):242-259.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bolzano on conceptual and intuitive truth: the point and purpose of the distinction.Mark Textor - 2013 - Canadian Journal of Philosophy 43 (1):13-36.
    Bolzano incorporated Kant's distinction between intuitions and concepts into the doctrine of propositions by distinguishing between conceptual (Begriffssätze an sich) and intuitive propositions (Anschauungssätze an sich). An intuitive proposition contains at least one objective intuition, that is, a simple idea that represents exactly one object; a conceptual proposition contains no objective intuition. After Bolzano, philosophers dispensed with the distinction between conceptual and intuitive propositions. So why did Bolzano attach philosophical importance to it? I will argue that, ultimately, the value of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematical explanation: Problems and prospects.Paolo Mancosu - 2001 - Topoi 20 (1):97-117.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • The Transition from Formula-Centered to Concept-Centered Analysis Bolzano's Purely Analytic Proof. as a Case Study.Iris Loeb & Stefan Roski - 2014 - Philosophia Scientiae 18 (1):113-129.
    In the 18th and 19th centuries two transitions took place in the development of mathematical analysis: a shift from the geometric approach to the formula-centered approach, followed by a shift from the formula-centered approach to the concept-centered approach. We identify, on the basis of Bolzano's Purely Analytic Proof [Bolzano 1817], the ways in which Bolzano's approach can be said to be concept-centered. Moreover, we conclude that Bolzano's attitude towards the geometric approach on the one hand and the formula-centered approach on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explanation by induction?Miguel Hoeltje, Benjamin Schnieder & Alex Steinberg - 2013 - Synthese 190 (3):509-524.
    Philosophers of mathematics commonly distinguish between explanatory and non-explanatory proofs. An important subclass of mathematical proofs are proofs by induction. Are they explanatory? This paper addresses the question, based on general principles about explanation. First, a recent argument for a negative answer is discussed and rebutted. Second, a case is made for a qualified positive take on the issue.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bolzanos Lehre von den meßbaren Zahlen 1830–1989.Detlef D. Spalt - 1991 - Archive for History of Exact Sciences 42 (1):15-70.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against Mathematical Explanation.Mark Zelcer - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):173-192.
    Lately, philosophers of mathematics have been exploring the notion of mathematical explanation within mathematics. This project is supposed to be analogous to the search for the correct analysis of scientific explanation. I argue here that given the way philosophers have been using “ explanation,” the term is not applicable to mathematics as it is in science.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Mathematics as the art of abstraction.Richard L. Epstein - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Dordrecht, Netherland: Springer. pp. 257--289.
    Download  
     
    Export citation  
     
    Bookmark   3 citations