Switch to: References

Citations of:

Hilbert's epistemology

Philosophy of Science 43 (1):99-115 (1976)

Add citations

You must login to add citations.
  1. Hilbert izlencesinin izinde adcılık adına yeni bulgular.Besim Karakadılar - manuscript
    Hilbert izlencesinin kanıt kuramsal amacı tarihsel gelişimi içinde özetlendikten sonra arka plandaki model-kuramsal motivasyonu belirtilmektedir. Hilbert'in nihai hedefinin matematiğin temellerine ilişkin tüm epistemolojik ve ontolojik varsayımlardan arındırılmış bir matematik kuramı geliştirmek olduğu savunulmaktadır. Yakın geçmişte mantıktaki bazı gelişmelerin Hilbert izlencesinin yalnızca adcı varsayımlar temelinde sürdürülebileceğine ilişkin yeni bir bakış açısı sağladığı öne sürülmektedir.
    Download  
     
    Export citation  
     
    Bookmark  
  • On what Hilbert aimed at in the foundations.Besim Karakadılar - manuscript
    Hilbert's axiomatic approach was an optimistic take over on the side of the logical foundations. It was also a response to various restrictive views of mathematics supposedly bounded by the reaches of epistemic elements in mathematics. A complete axiomatization should be able to exclude epistemic or ontic elements from mathematical theorizing, according to Hilbert. This exclusion is not necessarily a logicism in similar form to Frege's or Dedekind's projects. That is, intuition can still have a role in mathematical reasoning. Nevertheless, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Role of Mathematics in Scientific Representation.Saad Anis - unknown
    In this dissertation, I consider from a philosophical perspective three related questions concerning the contribution of mathematics to scientific representation. In answering these questions, I propose and defend Carnapian frameworks for examination into the nature and role of mathematics in science. The first research question concerns the varied ways in which mathematics contributes to scientific representation. In response, I consider in Chapter 2 two recent philosophical proposals claiming to account for the explanatory role of mathematics in science, by Philip Kitcher, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert between the formal and the informal side of mathematics.Giorgio Venturi - 2015 - Manuscrito 38 (2):5-38.
    : In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical proofs.Marco Panza - 2003 - Synthese 134 (1-2):119 - 158.
    The aim I am pursuing here is to describe some general aspects of mathematical proofs. In my view, a mathematical proof is a warrant to assert a non-tautological statement which claims that certain objects (possibly a certain object) enjoy a certain property. Because it is proved, such a statement is a mathematical theorem. In my view, in order to understand the nature of a mathematical proof it is necessary to understand the nature of mathematical objects. If we understand them as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hilbert's 'Verunglückter Beweis', the first epsilon theorem, and consistency proofs.Richard Zach - 2004 - History and Philosophy of Logic 25 (2):79-94.
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain "general consistency result" due to Bernays. An analysis of the form of this so-called "failed proof" (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Kantian and Neo-Kantian First Principles for Physical and Metaphysical Cognition.Michael E. Cuffaro - manuscript
    I argue that Immanuel Kant's critical philosophy—in particular the doctrine of transcendental idealism which grounds it—is best understood as an `epistemic' or `metaphilosophical' doctrine. As such it aims to show how one may engage in the natural sciences and in metaphysics under the restriction that certain conditions are imposed on our cognition of objects. Underlying Kant's doctrine, however, is an ontological posit, of a sort, regarding the fundamental nature of our cognition. This posit, sometimes called the `discursivity thesis', while considered (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Partial realizations of Hilbert's program.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (2):349-363.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Schoenberg, Wittgenstein, and the Vienna circle : epistemological meta-themes in harmonic theory, aesthetics, and logical positivism.James Kenneth Wright - unknown
    This study examines the relativistic aspects of Arnold Schoenberg's harmonic and aesthetic theories in the light of a framework of ideas presented in the early writings of Ludwig Wittgenstein, the logician, philosopher of language, and Schoenberg's contemporary and Austrian compatriot. The author has identified correspondences between the writings of Schoenberg, the early Wittgenstein, and the Vienna Circle of philosophers, on a wide range of topics and themes. Issues discussed include the nature and limits of language, musical universals, theoretical conventionalism, word-to-world (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • El enfoque epistemológico de David Hilbert: el a priori del conocimiento y el papel de la lógica en la fundamentación de la ciencia.Rodrigo Lopez-Orellana - 2019 - Principia: An International Journal of Epistemology 23 (2):279-308.
    This paper explores the main philosophical approaches of David Hilbert’s theory of proof. Specifically, it is focuses on his ideas regarding logic, the concept of proof, the axiomatic, the concept of truth, metamathematics, the a priori knowledge and the general nature of scientific knowledge. The aim is to show and characterize his epistemological approach on the foundation of knowledge, where logic appears as a guarantee of that foundation. Hilbert supposes that the propositional apriorism, proposed by him to support mathematics, sustains (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Pursuit of Rigor: Hilbert's axiomatic method and the objectivity of mathematics.Yoshinori Ogawa - 2004 - Annals of the Japan Association for Philosophy of Science 12 (2):89-108.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Different senses of finitude: An inquiry into Hilbert’s finitism.Sören Stenlund - 2012 - Synthese 185 (3):335-363.
    This article develops a critical investigation of the epistemological core of Hilbert's foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of 'number' and 'finitude' that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Bernays-Müller Debate.Günther Eder - 2023 - Hopos: The Journal of the International Society for the History of Philosophy of Science 13 (2):317-361.
    The Bernays-Müller debate was a dispute in the early 1920s between Paul Bernays and Aloys Müller regarding various philosophical issues related to “Hilbert’s program.” The debate is sometimes mentioned as a sidenote in discussions of Hilbert’s program, but there is little or no discussion of the debate itself in the secondary literature. This article aims to fill this gap and to provide a detailed analysis of the background of the debate, its contents, and the impact on its protagonists.
    Download  
     
    Export citation  
     
    Bookmark