Switch to: References

Add citations

You must login to add citations.
  1. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Are the Barriers that Inhibit Mathematical Models of a Cyclic Universe, which Admits Broken Symmetries, Dark Energy, and an Expanding Multiverse, Illusory?Bhupinder Singh Anand - manuscript
    We argue the thesis that if (1) a physical process is mathematically representable by a Cauchy sequence; and (2) we accept that there can be no infinite processes, i.e., nothing corresponding to infinite sequences, in natural phenomena; then (a) in the absence of an extraneous, evidence-based, proof of `closure' which determines the behaviour of the physical process in the limit as corresponding to a `Cauchy' limit; (b) the physical process must tend to a discontinuity (singularity) which has not been reflected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Set existence principles and closure conditions: unravelling the standard view of reverse mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Why Do We Prove Theorems?Yehuda Rav - 1999 - Philosophia Mathematica 7 (1):5-41.
    Ordinary mathematical proofs—to be distinguished from formal derivations—are the locus of mathematical knowledge. Their epistemic content goes way beyond what is summarised in the form of theorems. Objections are raised against the formalist thesis that every mainstream informal proof can be formalised in some first-order formal system. Foundationalism is at the heart of Hilbert's program and calls for methods of formal logic to prove consistency. On the other hand, ‘systemic cohesiveness’, as proposed here, seeks to explicate why mathematical knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (15 other versions)2000 European Summer Meeting of the Association for Symbolic Logic. Logic Colloquium 2000.Carol Wood - 2001 - Bulletin of Symbolic Logic 7 (1):82-163.
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation in Physics: Explanation in Physical Theory.Peter Clark - 1990 - Royal Institute of Philosophy Supplement 27:155-175.
    The corpus of physical theory is a paradigm of knowledge. The evolution of modern physical theory constitutes the clearest exemplar of the growth of knowledge. If the development of physical theory does not constitute an example of progress and growth in what we know about the Universe nothing does. So anyone interested in the theory of knowledge must be interested consequently in the evolution and content of physical theory. Crucial to the conception of physics as a paradigm of knowledge is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory.Michael Rathjen - 2005 - Synthese 147 (1):81-120.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert versus Hindman.Jeffry L. Hirst - 2012 - Archive for Mathematical Logic 51 (1-2):123-125.
    We show that a statement HIL, which is motivated by a lemma of Hilbert and close in formulation to Hindman’s theorem, is actually much weaker than Hindman’s theorem. In particular, HIL is finitistically reducible in the sense of Hilbert’s program, while Hindman’s theorem is not.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Different senses of finitude: An inquiry into Hilbert’s finitism.Sören Stenlund - 2012 - Synthese 185 (3):335-363.
    This article develops a critical investigation of the epistemological core of Hilbert's foundational project, the so-called the finitary attitude. The investigation proceeds by distinguishing different senses of 'number' and 'finitude' that have been used in the philosophical arguments. The usual notion of modern pure mathematics, i.e. the sense of number which is implicit in the notion of an arbitrary finite sequence and iteration is one sense of number and finitude. Another sense, of older origin, is connected with practices of counting (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of mathematical instrumentalism (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical Infinity, Its Inventors, Discoverers, Detractors, Defenders, Masters, Victims, Users, and Spectators.Edward G. Belaga - manuscript
    "The definitive clarification of the nature of the infinite has become necessary, not merely for the special interests of the individual sciences, but rather for the honour of the human understanding itself. The infinite has always stirred the emotions of mankind more deeply than any other question; the infinite has stimulated and fertilized reason as few other ideas have ; but also the infinite, more than other notion, is in need of clarification." (David Hilbert 1925).
    Download  
     
    Export citation  
     
    Bookmark  
  • Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • The applicability of mathematics as a scientific and a logical problem.Feng Ye - 2010 - Philosophia Mathematica 18 (2):144-165.
    This paper explores how to explain the applicability of classical mathematics to the physical world in a radically naturalistic and nominalistic philosophy of mathematics. The applicability claim is first formulated as an ordinary scientific assertion about natural regularity in a class of natural phenomena and then turned into a logical problem by some scientific simplification and abstraction. I argue that there are some genuine logical puzzles regarding applicability and no current philosophy of mathematics has resolved these puzzles. Then I introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • What rests on what? The proof-theoretic analysis of mathematics.Solomon Feferman - 1993 - In J. Czermak (ed.), Philosophy of Mathematics. Hölder-Pichler-Tempsky. pp. 1--147.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Does reductive proof theory have a viable rationale?Solomon Feferman - 2000 - Erkenntnis 53 (1-2):63-96.
    The goals of reduction andreductionism in the natural sciences are mainly explanatoryin character, while those inmathematics are primarily foundational.In contrast to global reductionistprograms which aim to reduce all ofmathematics to one supposedly ``universal'' system or foundational scheme, reductive proof theory pursues local reductions of one formal system to another which is more justified in some sense. In this direction, two specific rationales have been proposed as aims for reductive proof theory, the constructive consistency-proof rationale and the foundational reduction rationale. However, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Ordered groups: A case study in reverse mathematics.Reed Solomon - 1999 - Bulletin of Symbolic Logic 5 (1):45-58.
    The fundamental question in reverse mathematics is to determine which set existence axioms are required to prove particular theorems of mathematics. In addition to being interesting in their own right, answers to this question have consequences in both effective mathematics and the foundations of mathematics. Before discussing these consequences, we need to be more specific about the motivating question.Reverse mathematics is useful for studying theorems of either countable or essentially countable mathematics. Essentially countable mathematics is a vague term that is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding uniformity in Feferman's explicit mathematics.Thomas Glaß - 1995 - Annals of Pure and Applied Logic 75 (1-2):89-106.
    The aim of this paper is the analysis of uniformity in Feferman's explicit mathematics. The proof-strength of those systems for constructive mathematics is determined by reductions to subsystems of second-order arithmetic: If uniformity is absent, the method of standard structures yields that the strength of the join axiom collapses. Systems with uniformity and join are treated via cut elimination and asymmetrical interpretations in standard structures.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reverse mathematics and Peano categoricity.Stephen G. Simpson & Keita Yokoyama - 2013 - Annals of Pure and Applied Logic 164 (3):284-293.
    We investigate the reverse-mathematical status of several theorems to the effect that the natural number system is second-order categorical. One of our results is as follows. Define a system to be a triple A,i,f such that A is a set and i∈A and f:A→A. A subset X⊆A is said to be inductive if i∈X and ∀a ∈X). The system A,i,f is said to be inductive if the only inductive subset of A is A itself. Define a Peano system to be (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Dowód matematyczny z punktu widzenia formalizmu matematycznego. Część II.Krzysztof Wójtowicz - 2007 - Roczniki Filozoficzne 55 (2):139-153.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • 1997–98 Annual Meeting of the Association for Symbolic Logic.Bradd Hart - 1998 - Bulletin of Symbolic Logic 4 (4):443-458.
    Download  
     
    Export citation  
     
    Bookmark  
  • Two (or three) notions of finitism.Mihai Ganea - 2010 - Review of Symbolic Logic 3 (1):119-144.
    Finitism is given an interpretation based on two ideas about strings (sequences of symbols): a replacement principle extracted from Hilberts class 2 can be justified by means of an additional finitistic choice principle, thus obtaining a second equational theory . It is unknown whether is strictly stronger than since 2 may coincide with the class of lower elementary functions.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unification of mathematical theories.Krzysztof Wójtowicz - 1998 - Foundations of Science 3 (2):207-229.
    In this article the problem of unification of mathematical theories is discussed. We argue, that specific problems arise here, which are quite different than the problems in the case of empirical sciences. In particular, the notion of unification depends on the philosophical standpoint. We give an analysis of the notion of unification from the point of view of formalism, Gödel's platonism and Quine's realism. In particular we show, that the concept of “having the same object of study” should be made (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Periodic points and subsystems of second-order arithmetic.Harvey Friedman, Stephen G. Simpson & Xiaokang Yu - 1993 - Annals of Pure and Applied Logic 62 (1):51-64.
    We study the formalization within sybsystems of second-order arithmetic of theorems concerning periodic points in dynamical systems on the real line. We show that Sharkovsky's theorem is provable in WKL0. We show that, with an additional assumption, Sharkovsky's theorem is provable in RCA0. We show that the existence for all n of n-fold iterates of continuous mappings of the closed unit interval into itself is equivalent to the disjunction of Σ02 induction and weak König's lemma.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sets, wholes, and limited pluralitiest.Stephen Pollard - 1996 - Philosophia Mathematica 4 (1):42-58.
    This essay defends the following two claims: (1) liraitation-of-size reasoning yields enough sets to meet the needs of most mathematicians; (2) set formation and mereological fusion share enough logical features to justify placing both in the genus composition (even when the components of a set are taken to be its members rather than its subsets).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The meaning of pure mathematics.Jan Mycielski - 1989 - Journal of Philosophical Logic 18 (3):315 - 320.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth, reflection, and hierarchies.Michael Glanzberg - 2005 - Synthese 142 (3):289 - 315.
    A common objection to hierarchical approaches to truth is that they fragment the concept of truth. This paper defends hierarchical approaches in general against the objection of fragmentation. It argues that the fragmentation required is familiar and unprob-lematic, via a comparison with mathematical proof. Furthermore, it offers an explanation of the source and nature of the fragmentation of truth. Fragmentation arises because the concept exhibits a kind of failure of closure under reflection. This paper offers a more precise characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • and the existence of strong divisible closures (ACA0). Section 8 deals more directly with computability issues and discusses the relationship between Π0. [REVIEW]Reed Solomon - 1999 - Bulletin of Symbolic Logic 5 (1).
    Download  
     
    Export citation  
     
    Bookmark  
  • Things that can and things that cannot be done in PRA.Ulrich Kohlenbach - 2000 - Annals of Pure and Applied Logic 102 (3):223-245.
    It is well known by now that large parts of mathematical reasoning can be carried out in systems which are conservative over primitive recursive arithmetic PRA . On the other hand there are principles S of elementary analysis which are known to be equivalent to arithmetical comprehension and therefore go far beyond the strength of PRA . In this paper we determine precisely the arithmetical and computational strength of weaker function parameter-free schematic versions S− of S, thereby exhibiting different levels (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • ¿Es la Matemática un lenguaje?Daniel Quesada - 1991 - Revista de Filosofía (Madrid) 5:31.
    Download  
     
    Export citation  
     
    Bookmark