Switch to: References

Add citations

You must login to add citations.
  1. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the idea(1) of logical closure.G. Kreisel - 1992 - Annals of Pure and Applied Logic 56 (1-3):19-41.
    The article begins and ends with reminiscences and reflections about conversations with Myhill . The topic in the title was never far from these conversations, but remained off stage: questions about the suitability of the focus on logical languages and logical consequence, here meant in contrast to incomparable categories of propositions and proofs. The body of the article goes into cases where this focus has contributed to—and where it has distracted from more rewarding categories for—effective knowledge in mathematics. There are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Gödelian Inferences.Curtis Franks - 2009 - History and Philosophy of Logic 30 (3):241-256.
    I attribute an 'intensional reading' of the second incompleteness theorem to its author, Kurt G del. My argument builds partially on an analysis of intensional and extensional conceptions of meta-mathematics and partially on the context in which G del drew two familiar inferences from his theorem. Those inferences, and in particular the way that they appear in G del's writing, are so dubious on the extensional conception that one must doubt that G del could have understood his theorem extensionally. However, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The problem of the simplest Diophantine representation.Panu Raatikainen - 1997 - Nordic Journal of Philosophical Logic 2:47-54.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Klassinen matematiikka ja logiikka.Panu Raatikainen - 1996 - In Christoffer Gefwert (ed.), Logiikka, matematiikka ja tietokone – Perusteet: historiaa, filosofiaa ja sovelluksia. Finnish Artificial Intelligence Society.
    Toisaalta ennennäkemätön äärettömien joukko-opillisten menetelmien hyödyntäminen sekä toisaalta epäilyt niiden hyväksyttävyydestä ja halu oikeuttaa niiden käyttö ovat ratkaisevasti muovanneet vuosisatamme matematiikkaa ja logiikkaa. Tämän kehityksen vaikutus nykyajan filosofiaan on myös ollut valtaisa; merkittävää osaa siitä ei voi edes ymmärtää tuntematta sen yhteyttä tähän matematiikan ja logiikan vallankumoukseen. Lähestymistapoja, jotka tavalla tai toisella hyväksyvät äärettömän matematiikan ja perinteisten logiikan sääntöjen (erityisesti kolmannen poissuljetun lain) soveltamisen myös sen piirissä, on tullut tavaksi kutsua klassiseksi matematiikaksi ja logiikaksi erotuksena nämä hylkäävistä radikaaleista intuitionistisista ja (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Jean van Heijenoort’s Contributions to Proof Theory and Its History.Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):411-458.
    Jean van Heijenoort was best known for his editorial work in the history of mathematical logic. I survey his contributions to model-theoretic proof theory, and in particular to the falsifiability tree method. This work of van Heijenoort’s is not widely known, and much of it remains unpublished. A complete list of van Heijenoort’s unpublished writings on tableaux methods and related work in proof theory is appended.
    Download  
     
    Export citation  
     
    Bookmark  
  • Simplicity and incompleteness.Panu Raatikainen - 1998 - Synthese 116 (3):357-364.
    Download  
     
    Export citation  
     
    Bookmark  
  • Jacques Herbrand: life, logic, and automated deduction.Claus-Peter Wirth, Jörg Siekmann, Christoph Benzmüller & Serge Autexier - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 195-254.
    Download  
     
    Export citation  
     
    Bookmark  
  • Herbrand analyses.Wilfried Sieg - 1991 - Archive for Mathematical Logic 30 (5-6):409-441.
    Herbrand's Theorem, in the form of $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\exists } $$ -inversion lemmata for finitary and infinitary sequent calculi, is the crucial tool for the determination of the provably total function(al)s of a variety of theories. The theories are (second order extensions of) fragments of classical arithmetic; the classes of provably total functions include the elements of the Polynomial Hierarchy, the Grzegorczyk Hierarchy, and the extended Grzegorczyk Hierarchy $\mathfrak{E}^\alpha $ , α < ε0. A subsidiary aim of the paper is to show (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The computational content of Nonstandard Analysis.Sam Sanders - unknown
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of Brouwer and Heyting.Joan Rand Moschovakis - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 77-125.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some Remarks on a Difference between Gentzen's Finitist and Heyting's Intuitionist Approaches toward Intuitionistic Logic and Arithmetic.Mitsuhiro Okada - 2008 - Annals of the Japan Association for Philosophy of Science 16 (1-2):1-17.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kreisel's 'Unwinding Program'.Solomon Feferman - 1996 - In Piergiorgio Odifreddi (ed.), Kreiseliana: About and Around Georg Kreisel. A K Peters. pp. 247--273.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Working foundations.Solomon Feferman - 1985 - Synthese 62 (2):229 - 254.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Theorie Der Numerierungen III.Ju L. Erš - 1977 - Mathematical Logic Quarterly 23 (19-24):289-371.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • On the no-counterexample interpretation.Ulrich Kohlenbach - 1999 - Journal of Symbolic Logic 64 (4):1491-1511.
    In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Constructive Valuation Semantics for Classical Logic.Franco Barbanera & Stefano Berardi - 1996 - Notre Dame Journal of Formal Logic 37 (3):462-482.
    This paper presents a constructive interpretation for the proofs in classical logic of $\Sigma^0_1$ -sentences and for a witness extraction procedure based on Prawitz's reduction rules.
    Download  
     
    Export citation  
     
    Bookmark  
  • A strong normalization result for classical logic.Franco Barbanera & Stefano Berardi - 1995 - Annals of Pure and Applied Logic 76 (2):99-116.
    In this paper we give a strong normalization proof for a set of reduction rules for classical logic. These reductions, more general than the ones usually considered in literature, are inspired to the reductions of Felleisen's lambda calculus with continuations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation