- Anti‐Mitotic Recursively Enumerable Sets.Klaus Ambos-Spies - 1985 - Mathematical Logic Quarterly 31 (29-30):461-477.details
|
|
(1 other version)The http://ars. els-cdn. com/content/image/http://origin-ars. els-cdn. com/content/image/1-s2. 0-S0168007205001429-si1. gif"/> degrees of computably enumerable sets are not dense. [REVIEW]George Barmpalias & Andrew Em Lewis - 2006 - Annals of Pure and Applied Logic 141 (1):51-60.details
|
|
Intervals and sublattices of the R.E. weak truth table degrees, part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.details
|
|
The computable Lipschitz degrees of computably enumerable sets are not dense.Adam R. Day - 2010 - Annals of Pure and Applied Logic 161 (12):1588-1602.details
|
|
A computably enumerable vector space with the strong antibasis property.L. R. Galminas - 2000 - Archive for Mathematical Logic 39 (8):605-629.details
|
|
Infima in the Recursively Enumerable Weak Truth Table Degrees.Rich Blaylock, Rod Downey & Steffen Lempp - 1997 - Notre Dame Journal of Formal Logic 38 (3):406-418.details
|
|
Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.details
|
|
Corrigendum: ``Contiguity and distributivity in the enumerable Turing degrees''.Rodney G. Downey & Steffen Lempp - 2002 - Journal of Symbolic Logic 67 (4):1579-1580.details
|
|
The cupping theorem in r/m.Sui Yuefei & Zhang Zaiyue - 1999 - Journal of Symbolic Logic 64 (2):643-650.details
|
|
Wtt-degrees and t-degrees of R.e. Sets.Michael Stob - 1983 - Journal of Symbolic Logic 48 (4):921-930.details
|
|
The theory of the recursively enumerable weak truth-table degrees is undecidable.Klaus Ambos-Spies, André Nies & Richard A. Shore - 1992 - Journal of Symbolic Logic 57 (3):864-874.details
|
|
(1 other version)Decidability of the two-quantifier theory of the recursively enumerable weak truth-table degrees and other distributive upper semi-lattices.Klaus Ambos-Spies, Peter A. Fejer, Steffen Lempp & Manuel Lerman - 1996 - Journal of Symbolic Logic 61 (3):880-905.details
|
|
Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.details
|
|
Recursively enumerablem- andtt-degrees II: The distribution of singular degrees. [REVIEW]R. G. Downey - 1988 - Archive for Mathematical Logic 27 (2):135-147.details
|
|
Pairs without infimum in the recursively enumerable weak truth table degrees.Paul Fischer - 1986 - Journal of Symbolic Logic 51 (1):117-129.details
|
|
Structural interactions of the recursively enumerable T- and W-degrees.R. G. Downey & M. Stob - 1986 - Annals of Pure and Applied Logic 31:205-236.details
|
|
Splitting properties of R. E. sets and degrees.R. G. Downey & L. V. Welch - 1986 - Journal of Symbolic Logic 51 (1):88-109.details
|
|
Embedding lattices into the wtt-degrees below 0'.Rod Downey & Christine Haught - 1994 - Journal of Symbolic Logic 59 (4):1360-1382.details
|
|
An extended Lachlan splitting theorem.Steffen Lempp & Sui Yuefei - 1996 - Annals of Pure and Applied Logic 79 (1):53-59.details
|
|
Embeddings of N5 and the contiguous degrees.Klaus Ambos-Spies & Peter A. Fejer - 2001 - Annals of Pure and Applied Logic 112 (2-3):151-188.details
|
|
(1 other version)The ibT degrees of computably enumerable sets are not dense.George Barmpalias & Andrew E. M. Lewis - 2006 - Annals of Pure and Applied Logic 141 (1-2):51-60.details
|
|
Intervals containing exactly one c.e. degree.Guohua Wu - 2007 - Annals of Pure and Applied Logic 146 (1):91-102.details
|
|
On the Universal Splitting Property.Rod Downey - 1997 - Mathematical Logic Quarterly 43 (3):311-320.details
|
|
Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.details
|
|
Maximal contiguous degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.details
|
|
(1 other version)A Contiguous Nonbranching Degree.Rod Downey - 1989 - Mathematical Logic Quarterly 35 (4):375-383.details
|
|
Degree theoretical splitting properties of recursively enumerable sets.Klaus Ambos-Spies & Peter A. Fejer - 1988 - Journal of Symbolic Logic 53 (4):1110-1137.details
|
|
Bezem, M., see Barendsen, E.G. M. Bierman, M. DZamonja, S. Shelah, S. Feferman, G. Jiiger, M. A. Jahn, S. Lempp, Sui Yuefei, S. D. Leonhardi & D. Macpherson - 1996 - Annals of Pure and Applied Logic 79 (1):317.details
|
|
(1 other version)Working below a low2 recursively enumerably degree.Richard A. Shore & Theodore A. Slaman - 1990 - Archive for Mathematical Logic 29 (3):201-211.details
|
|