Switch to: References

Add citations

You must login to add citations.
  1. Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstract logical structuralism.Jean-Pierre Marquis - 2020 - Philosophical Problems in Science 69:67-110.
    Structuralism has recently moved center stage in philosophy of mathematics. One of the issues discussed is the underlying logic of mathematical structuralism. In this paper, I want to look at the dual question, namely the underlying structures of logic. Indeed, from a mathematical structuralist standpoint, it makes perfect sense to try to identify the abstract structures underlying logic. We claim that one answer to this question is provided by categorical logic. In fact, we claim that the latter can be seen—and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Category Theory is a Contentful Theory.Shay Logan - 2015 - Philosophia Mathematica 23 (1):110-115.
    Linnebo and Pettigrew present some objections to category theory as an autonomous foundation. They do a commendable job making clear several distinct senses of ‘autonomous’ as it occurs in the phrase ‘autonomous foundation’. Unfortunately, their paper seems to treat the ‘categorist’ perspective rather unfairly. Several infelicities of this sort were addressed by McLarty. In this note I address yet another apparent infelicity.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Elements of Categorical Logic: Fifty Years Later. [REVIEW]Valeria de Paiva & Andrei Rodin - 2013 - Logica Universalis 7 (3):265-273.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the ehresmann–vanbremeersch theory and mathematical biology.Paul C. Kainen - 2009 - Axiomathes 19 (3):225-244.
    Category theory has been proposed as the ultimate algebraic model for biology. We review the Ehresmann–Vanbremeersch theory in the context of other mathematical approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Categories in context: Historical, foundational, and philosophical.Elaine Landry & Jean-Pierre Marquis - 2005 - Philosophia Mathematica 13 (1):1-43.
    The aim of this paper is to put into context the historical, foundational and philosophical significance of category theory. We use our historical investigation to inform the various category-theoretic foundational debates and to point to some common elements found among those who advocate adopting a foundational stance. We then use these elements to argue for the philosophical position that category theory provides a framework for an algebraic in re interpretation of mathematical structuralism. In each context, what we aim to show (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Categorical ontology of levels and emergent complexity: an introduction. [REVIEW]Ion C. Baianu - 2007 - Axiomathes 17 (3-4):209-222.
    An overview of the following three related papers in this issue presents the Emergence of Highly Complex Systems such as living organisms, man, society and the human mind from the viewpoint of the current Ontological Theory of Levels. The ontology of spacetime structures in the Universe is discussed beginning with the quantum level; then, the striking emergence of the higher levels of reality is examined from a categorical—relational and logical viewpoint. The ontological problems and methodology aspects discussed in the first (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Functorial Semantics for the Advancement of the Science of Cognition.Venkata Posina, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161-184.
    Cognition involves physical stimulation, neural coding, mental conception, and conscious perception. Beyond the neural coding of physical stimuli, it is not clear how exactly these component processes constitute cognition. Within mathematical sciences, category theory provides tools such as category, functor, and adjointness, which are indispensable in the explication of the mathematical calculations involved in acquiring mathematical knowledge. More speci cally, functorial semantics, in showing that theories and models can be construed as categories and functors, respectively, and in establishing the adjointness (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hard, Harder, and the Hardest Problem: The Society of Cognitive Selves.Venkata Rayudu Posina - 2020 - Tattva - Journal of Philosophy 12 (1):75-92.
    The hard problem of consciousness is explicating how moving matter becomes thinking matter. Harder yet is the problem of spelling out the mutual determinations of individual experiences and the experiencing self. Determining how the collective social consciousness influences and is influenced by the individual selves constituting the society is the hardest problem. Drawing parallels between individual cognition and the collective knowing of mathematical science, here we present a conceptualization of the cognitive dimension of the self. Our abstraction of the relations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The meaning of category theory for 21st century philosophy.Alberto Peruzzi - 2006 - Axiomathes 16 (4):424-459.
    Among the main concerns of 20th century philosophy was that of the foundations of mathematics. But usually not recognized is the relevance of the choice of a foundational approach to the other main problems of 20th century philosophy, i.e., the logical structure of language, the nature of scientific theories, and the architecture of the mind. The tools used to deal with the difficulties inherent in such problems have largely relied on set theory and its “received view”. There are specific issues, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Methodological Roles of Tolerance and Conventionalism in the Philosophy of Mathematics: Reconsidering Carnap's Logic of Science.Emerson P. Doyle - 2014 - Dissertation, University of Western Ontario
    This dissertation makes two primary contributions. The first three chapters develop an interpretation of Carnap's Meta-Philosophical Program which places stress upon his methodological analysis of the sciences over and above the Principle of Tolerance. Most importantly, I suggest, is that Carnap sees philosophy as contiguous with science—as a part of the scientific enterprise—so utilizing the very same methods and subject to the same limitations. I argue that the methodological reforms he suggests for philosophy amount to philosophy as the explication of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (Math, science, ?).M. Kary - 2009 - Axiomathes 19 (3):61-86.
    In science as in mathematics, it is popular to know little and resent much about category theory. Less well known is how common it is to know little and like much about set theory. The set theory of almost all scientists, and even the average mathematician, is fundamentally different from the formal set theory that is contrasted against category theory. The latter two are often opposed by saying one emphasizes Substance, the other Form. However, in all known systems of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A conceptual construction of complexity levels theory in spacetime categorical ontology: Non-Abelian algebraic topology, many-valued logics and dynamic systems. [REVIEW]R. Brown, J. F. Glazebrook & I. C. Baianu - 2007 - Axiomathes 17 (3-4):409-493.
    A novel conceptual framework is introduced for the Complexity Levels Theory in a Categorical Ontology of Space and Time. This conceptual and formal construction is intended for ontological studies of Emergent Biosystems, Super-complex Dynamics, Evolution and Human Consciousness. A claim is defended concerning the universal representation of an item’s essence in categorical terms. As an essential example, relational structures of living organisms are well represented by applying the important categorical concept of natural transformations to biomolecular reactions and relational structures that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Functorial Semantics for the Advancement of the Science of Cognition.Posina Venkata Rayudu, Dhanjoo N. Ghista & Sisir Roy - 2017 - Mind and Matter 15 (2):161–184.
    Our manuscript addresses the foundational question of cognitive science: how do we know? Specifically, examination of the mathematics of acquiring mathematical knowledge revealed that knowing-within-mathematics is reflective of knowing-in-general. Based on the correspondence between ordinary cognition (involving physical stimuli, neural sensations, mental concepts, and conscious percepts) and mathematical knowing (involving objective particulars, measured properties, abstract theories, and concrete models), we put forward the functorial semantics of mathematical knowing as a formalization of cognition. Our investigation of the similarity between mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Categories without Structures.Andrei Rodin - 2011 - Philosophia Mathematica 19 (1):20-46.
    The popular view according to which category theory provides a support for mathematical structuralism is erroneous. Category-theoretic foundations of mathematics require a different philosophy of mathematics. While structural mathematics studies ‘invariant form’ (Awodey) categorical mathematics studies covariant and contravariant transformations which, generally, have no invariants. In this paper I develop a non-structuralist interpretation of categorical mathematics.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Development of Categorical Logic.John L. Bell - unknown
    5.5. Every topos is linguistic: the equivalence theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On categorical theory-building: Beyond the formal.Andrei Rodin - unknown
    Formal Axiomatic method as exemplified in Hilbert’s Grundlagen der Geometrie is based on a structuralist vision of mathematics and science according to which theories and objects of these theories are to be construed “up to isomorphism”. This structuralist approach is tightly linked with the idea of making Set theory into foundations of mathematics. Category theory suggests a generalisation of Formal Axiomatic method, which amounts to construing objects and theories “up to general morphism” rather than up to isomorphism. It is shown (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic, Mathematics, Philosophy, Vintage Enthusiasms: Essays in Honour of John L. Bell.David DeVidi, Michael Hallett & Peter Clark (eds.) - 2011 - Dordrecht, Netherland: Springer.
    The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic ; analytical philosophy, philosophy of science, philosophy of mathematics and decision theory and foundations of economics. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reciprocal Influences Between Proof Theory and Logic Programming.Dale Miller - 2019 - Philosophy and Technology 34 (1):75-104.
    The topics of structural proof theory and logic programming have influenced each other for more than three decades. Proof theory has contributed the notion of sequent calculus, linear logic, and higher-order quantification. Logic programming has introduced new normal forms of proofs and forced the examination of logic-based approaches to the treatment of bindings. As a result, proof theory has responded by developing an approach to proof search based on focused proof systems in which introduction rules are organized into two alternating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Topos Theory in Montréal in the 1970s: My Personal Involvement.Gonzalo E. Reyes - 2019 - History and Philosophy of Logic 40 (4):389-402.
    Volume 40, Issue 4, November 2019, Page 389-402.
    Download  
     
    Export citation  
     
    Bookmark  
  • Math, Science,?M. Kary - 2009 - Axiomathes 19 (3):321-339.
    In science as in mathematics, it is popular to know little and resent much about category theory. Less well known is how common it is to know little and like much about set theory. The set theory of almost all scientists, and even the average mathematician, is fundamentally different from the formal set theory that is contrasted against category theory. The latter two are often opposed by saying one emphasizes Substance, the other Form. However, in all known systems of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural realism and quantum gravity.Tian Yu Cao - 2006 - In Dean Rickles, Steven French & Juha T. Saatsi (eds.), The Structural Foundations of Quantum Gravity. Oxford, GB: Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An argument against nominalism.Francesco Maria Ferrari - 2022 - Synthese 200 (5):1-23.
    Nominalism in formal ontology is still the thesis that the only acceptable domain of quantification is the first-order domain of particulars. Nominalists may assert that second-order well-formed formulas can be fully and completely interpreted within the first-order domain, thereby avoiding any ontological commitment to second-order entities, by means of an appropriate semantics called “substitutional”. In this paper I argue that the success of this strategy depends on the ability of Nominalists to maintain that identity, and equivalence relations more in general, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Transformations of Organismic Structures.Prof Dr I. C. Baianu - unknown
    The mathematical structures underlying the theories of organismic sets, (M, R)-systems and molecular sets are shown to be transformed naturally within the theory of categories and functors. Their natural transformations allow the comparison of distinct entities, as well as the modelling of dynamics in “organismic” structures.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Functoriality of the Schmidt construction.Juan Climent Vidal & Enric Cosme Llópez - 2023 - Logic Journal of the IGPL 31 (5):822-893.
    After proving, in a purely categorial way, that the inclusion functor $\textrm {In}_{\textbf {Alg}(\varSigma )}$ from $\textbf {Alg}(\varSigma )$, the category of many-sorted $\varSigma $-algebras, to $\textbf {PAlg}(\varSigma )$, the category of many-sorted partial $\varSigma $-algebras, has a left adjoint $\textbf {F}_{\varSigma }$, the (absolutely) free completion functor, we recall, in connection with the functor $\textbf {F}_{\varSigma }$, the generalized recursion theorem of Schmidt, which we will also call the Schmidt construction. Next, we define a category $\textbf {Cmpl}(\varSigma )$, of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Saunders Mac Lane (1909–2005): His mathematical life and philosophical works.Colin McLarty - 2005 - Philosophia Mathematica 13 (3):237-251.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pasch's empiricism as methodological structuralism.Dirk Schlimm - 2020 - In Erich H. Reck & Georg Schiemer (eds.), The Pre-History of Mathematical Structuralism. Oxford: Oxford University Press. pp. 80-105.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Creating new concepts in mathematics: freedom and limitations. The case of Category Theory.Zbigniew Semadeni - 2020 - Philosophical Problems in Science 69:33-65.
    In the paper we discuss the problem of limitations of freedom in mathematics and search for criteria which would differentiate the new concepts stemming from the historical ones from the new concepts that have opened unexpected ways of thinking and reasoning. We also investigate the emergence of category theory and its origins. In particular we explore the origins of the term functor and present the strong evidence that Eilenberg and Carnap could have learned the term from Kotarbiński and Tarski.
    Download  
     
    Export citation  
     
    Bookmark