Switch to: References

Add citations

You must login to add citations.
  1. The Past Hypothesis and the Nature of Physical Laws.Eddy Keming Chen - 2023 - In Barry Loewer, Brad Weslake & Eric B. Winsberg (eds.), The Probability Map of the Universe: Essays on David Albert’s _time and Chance_. Cambridge MA: Harvard University Press. pp. 204-248.
    If the Past Hypothesis underlies the arrows of time, what is the status of the Past Hypothesis? In this paper, I examine the role of the Past Hypothesis in the Boltzmannian account and defend the view that the Past Hypothesis is a candidate fundamental law of nature. Such a view is known to be compatible with Humeanism about laws, but as I argue it is also supported by a minimal non-Humean "governing'' view. Some worries arise from the non-dynamical and time-dependent (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Virtues of Pursuit-Worthy Speculation: The Promises of Cosmic Inflation.William J. Wolf & Patrick M. Duerr - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Typical Principle.Isaac Wilhelm - forthcoming - British Journal for the Philosophy of Science.
    If a proposition is typically true, given your evidence, then you should believe that proposition; or so I argue here. In particular, in this paper, I propose and defend a principle of rationality---call it the `Typical Principle'---which links rational belief to facts about what is typical. As I show, this principle avoids several problems that other, seemingly similar principles face. And as I show, in many cases, this principle implies the verdicts of the Principal Principle: so ultimately, the Typical Principle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Typical: A Theory of Typicality and Typicality Explanation.Isaac Wilhelm - 2022 - British Journal for the Philosophy of Science 73 (2):561-581.
    Typicality is routinely invoked in everyday contexts: bobcats are typically short-tailed; people are typically less than seven feet tall. Typicality is invoked in scientific contexts as well: typical gases expand; typical quantum systems exhibit probabilistic behaviour. And typicality facts like these support many explanations, both quotidian and scientific. But what is it for something to be typical? And how do typicality facts explain? In this paper, I propose a general theory of typicality. I analyse the notion of a typical property. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Typicality and Minutis Rectis Laws: From Physics to Sociology.Gerhard Wagner - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (3):447-458.
    This paper contributes to the clarification of the concept of “typicality” discussed in contemporary philosophy of physics by conceiving the nomological status of a typical behaviour such as that expressed in the Second Law of Thermodynamics as a “minutis rectis law”. A brief sketch of the discovery of “typicality” shows that there were ideas of typical behaviour not only in physics but also in sociology. On this basis and in analogy to the Second Law of Thermodynamics, it is shown that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Dynamic probability and the problem of initial conditions.Michael Strevens - 2021 - Synthese 199 (5-6):14617-14639.
    Dynamic approaches to understanding probability in the non-fundamental sciences turn on certain properties of physical processes that are apt to produce “probabilistically patterned” outcomes. The dynamic properties on their own, however, seem not quite sufficient to explain the patterns; in addition, some sort of assumption about initial conditions must be made, an assumption that itself typically takes a probabilistic form. How should such a posit be understood? That is the problem of initial conditions. Reichenbach, in his doctoral dissertation, floated a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Particles Do Not Conspire.Arianne Shahvisi - 2019 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 50 (4):521-543.
    The aim of this paper is to debunk the assertion that miraculous “conspiracies” between fundamental particles are required to bring about the projectibility of special science generalisations. Albert and Loewer have proposed a theory of lawhood which supplements the Best System of fundamental laws with a statistical postulate over the initial conditions of the universe, thereby rendering special science generalisations highly probable, and dispelling the conspiracy. However, concerns have been raised about its ability to confer typicality upon special science generalisations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Essentially Ergodic Behaviour.Paula Reichert - 2020 - British Journal for the Philosophy of Science (online):axaa007.
    I prove a theorem on the precise connection of the time and phase-space average of the Boltzmann equilibrium showing that the behaviour of a dynamical system with a stationary measure and a dominant equilibrium state is qualitatively ergodic. Explicitly, I show that given a dynamical system with a stationary measure and a region of overwhelming phase-space measure, almost all trajectories spend almost all of their time in that region. Conversely, given that almost all trajectories spend almost all of their time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Implementation, Interpretation, and Justification of Likelihoods in Cosmology.C. D. McCoy - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:19-35.
    I discuss the formal implementation, interpretation, and justification of likelihood attributions in cosmology. I show that likelihood arguments in cosmology suffer from significant conceptual and formal problems that undermine their applicability in this context.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • De Broglie-Bohm Theory, Quo Vadis?Vera Matarese - 2022 - Foundations of Physics 53 (1):1-20.
    The purpose of this contribution is to examine the current state of the de Broglie-Bohm theory (dBB) in light of Bohm’s vision as he explicitly set it out in his book Quantum theory [In Bohm, D., Quantum theory, Courier corporation, (1961b)]. In particular, two programmes that differ in many crucial respects are currently being pursued. On the one hand, the Bohmian mechanics school, founded by Dürr Goldstein and Zanghì, considers the theory to be Galilean invariant, regards particles’ motion as determined (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Boltzmann versus Gibbs and the Equilibrium in Statistical Mechanics.Dustin Lazarovici - 2019 - Philosophy of Science 86 (4):785-793.
    Charlotte Werndl and Roman Frigg discuss the relationship between the Boltzmannian and Gibbsian framework of statistical mechanics, addressing, in particular, the question when equilibrium values calculated in both frameworks agree. This note points out conceptual confusions that could arise from their discussion, concerning, in particular, the authors’ use of “Boltzmann equilibrium.” It also clarifies the status of the Khinchin condition for the equivalence of Boltzmannian and Gibbsian equilibrium predictions and shows that it follows, under the assumptions proposed by Werndl and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Bohmian Mechanics is Not Deterministic.Klaas Landsman - 2022 - Foundations of Physics 52 (4):1-17.
    I argue that Bohmian mechanics cannot reasonably be claimed to be a deterministic theory. If one assumes the “quantum equilibrium distribution” provided by the wave function of the universe, Bohmian mechanics requires an external random oracle in order to describe the algorithmic randomness properties of typical outcome sequences of long runs of repeated identical experiments. This oracle lies beyond the scope of Bohmian mechanics, including the impossibility of explaining the randomness property in question from “random” initial conditions. Thus the advantages (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Understanding Physics: ‘What?’, ‘Why?’, and ‘How?’.Mario Hubert - 2021 - European Journal for Philosophy of Science 11 (3):1-36.
    I want to combine two hitherto largely independent research projects, scientific understanding and mechanistic explanations. Understanding is not only achieved by answering why-questions, that is, by providing scientific explanations, but also by answering what-questions, that is, by providing what I call scientific descriptions. Based on this distinction, I develop three forms of understanding: understanding-what, understanding-why, and understanding-how. I argue that understanding-how is a particularly deep form of understanding, because it is based on mechanistic explanations, which answer why something happens in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Reviving Frequentism.Mario Hubert - 2021 - Synthese 199:5255–5584.
    Philosophers now seem to agree that frequentism is an untenable strategy to explain the meaning of probabilities. Nevertheless, I want to revive frequentism, and I will do so by grounding probabilities on typicality in the same way as the thermodynamic arrow of time can be grounded on typicality within statistical mechanics. This account, which I will call typicality frequentism, will evade the major criticisms raised against previous forms of frequentism. In this theory, probabilities arise within a physical theory from statistical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How (not) to understand weak measurements of velocities.Johannes Fankhauser & Patrick M. Dürr - 2021 - Studies in History and Philosophy of Science Part A 85:16-29.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What does the world look like according to superdeterminism.Augustin Baas & Baptiste Le Bihan - 2023 - British Journal for the Philosophy of Science 74 (3):555-572.
    The violation of Bell inequalities seems to establish an important fact about the world: that it is non-local. However, this result relies on the assumption of the statistical independence of the measurement settings with respect to potential past events that might have determined them. Superdeterminism refers to the view that a local, and determinist, account of Bell inequalities violations is possible, by rejecting this assumption of statistical independence. We examine and clarify various problems with superdeterminism, looking in particular at its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is It Like to be a Relativistic GRW Theory? Or: Quantum Mechanics and Relativity, Still in Conflict After All These Years.Valia Allori - 2022 - Foundations of Physics 52 (4):1-28.
    The violation of Bell’s inequality has shown that quantum theory and relativity are in tension: reality is nonlocal. Nonetheless, many have argued that GRW-type theories are to be preferred to pilot-wave theories as they are more compatible with relativity: while relativistic pilot-wave theories require a preferred slicing of space-time, foliation-free relativistic GRW-type theories have been proposed. In this paper I discuss various meanings of ‘relativistic invariance,’ and I show how GRW-type theories, while being more relativistic in one sense, are less (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On Nonequilibrium Statistical Mechanics.Joshua M. Luczak - unknown
    This thesis makes the issue of reconciling the existence of thermodynamically irreversible processes with underlying reversible dynamics clear, so as to help explain what philosophers mean when they say that an aim of nonequilibrium statistical mechanics is to underpin aspects of thermodynamics. Many of the leading attempts to reconcile the existence of thermodynamically irreversible processes with underlying reversible dynamics proceed by way of discussions that attempt to underpin the following qualitative facts: (i) that isolated macroscopic systems that begin away from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Historical and Conceptual Foundations of Information Physics.Anta Javier - 2021 - Dissertation, Universitat de Barcelona
    The main objective of this dissertation is to philosophically assess how the use of informational concepts in the field of classical thermostatistical physics has historically evolved from the late 1940s to the present day. I will first analyze in depth the main notions that form the conceptual basis on which 'informational physics' historically unfolded, encompassing (i) different entropy, probability and information notions, (ii) their multiple interpretative variations, and (iii) the formal, numerical and semantic-interpretative relationships among them. In the following, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Typical Humean worlds have no laws.Dustin Lazarovici - unknown
    The paper uses the concept of typicality to spell out an argument against Humean supervenience and the best system account of laws. It proves that, in a very general and robust sense, almost all possible Humean worlds have no Humean laws. They are worlds of irreducible complexity that do not allow for any systematization. After explaining typicality reasoning in general, the implications of this result for the metaphysics of laws are discussed in detail.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Epistemic Schism of Statistical Mechanics.Javier Anta - 2021 - Theoria 36 (3):399-419.
    In this paper I will argue that the two main approaches to statistical mechanics, that of Boltzmann and Gibbs, constitute two substantially different theoretical apparatuses. Particularly, I defend that this theoretical split must be philosophically understood as a separation of epistemic functions within this physical domain: while Boltzmannians are able to generate powerful explanations of thermal phenomena from molecular dynamics, Gibbsians can statistically predict observable values in a highly effective way. Therefore, statistical mechanics is a counterexample to Hempel's (1958) symmetry (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From the universe to subsystems: Why quantum mechanics appears more stochastic than classical mechanics.Andrea Oldofredi, Dustin Lazarovici, Dirk-André Deckert & Michael Esfeld - 2016 - Fluctuation and Noise Letters 15 (3).
    By means of the examples of classical and Bohmian quantum mechanics, we illustrate the well-known ideas of Boltzmann as to how one gets from laws defined for the universe as a whole to dynamical relations describing the evolution of subsystems. We explain how probabilities enter into this process, what quantum and classical probabilities have in common and where exactly their difference lies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The enigma of irreversibility and the interplay between Physics, Mathematics and Philosophy.Loris Serafino - unknown
    The problem of reconciling a reversible micro-dynamics with the second law of thermodynamics has been a scientific and conceptual challenge for centuries and it continues to animate heated debate even today. In my opinion, one key point lays in the interrelation between the physical, the mathematical and the philosophical aspects of the problem. In many treatments those domains of knowledge dangerously mix, generating confusion and misunderstanding. In this short work I will show how disentangling these three domains for the problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Why determinism in physics has no implications for free will.Michael Esfeld - unknown
    This paper argues for the following three theses: There is a clear reason to prefer physical theories with deterministic dynamical equations: such theories are both maximally simple and maximally rich in information, since given an initial configuration of matter and the dynamical equations, the whole evolution of the configuration of matter is fixed. There is a clear way how to introduce probabilities in a deterministic physical theory, namely as answer to the question of what evolution of a specific system we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Comment on "Mind the Gap: Boltzmannian versus Gibbsian Equilibrium".Dustin Lazarovici - unknown
    In a recent paper, Werndl and Frigg discuss the relationship between the Boltzmannian and Gibbsian framework of statistical mechanics, addressing in particular the question when equilibrium values calculated in both frameworks coincide. In this comment, I point out serious flaws in their work and try to put their results into proper context. I also clarify the concept of Boltzmann equilibrium, the status of the "Khinchin condition" and their connection to the law of large numbers.
    Download  
     
    Export citation  
     
    Bookmark