Switch to: References

Citations of:

Hilbert and Bernays on Metamathematics

In ¸ Itemancosu1998. Oxford University Press. pp. 149--188 (1998)

Add citations

You must login to add citations.
  1. Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • ‘Metamathematics’ in Transition.Matthias Wille - 2011 - History and Philosophy of Logic 32 (4):333 - 358.
    In this paper, we trace the conceptual history of the term ?metamathematics? in the nineteenth century. It is well known that Hilbert introduced the term for his proof-theoretic enterprise in about 1922. But he was verifiably inspired by an earlier usage of the phrase in the 1870s. After outlining Hilbert's understanding of the term, we will explore the lines of inducement and elucidate the different meanings of ?metamathematics? in the final decades of the nineteenth century. Finally, we will investigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mathematical explanation: Problems and prospects.Paolo Mancosu - 2001 - Topoi 20 (1):97-117.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Between Russell and Hilbert: Behmann on the foundations of mathematics.Paolo Mancosu - 1999 - Bulletin of Symbolic Logic 5 (3):303-330.
    After giving a brief overview of the renewal of interest in logic and the foundations of mathematics in Göttingen in the period 1914-1921, I give a detailed presentation of the approach to the foundations of mathematics found in Behmann's doctoral dissertation of 1918, Die Antinomie der transfiniten Zahl und ihre Auflösung durch die Theorie von Russell und Whitehead. The dissertation was written under the guidance of David Hilbert and was primarily intended to give a clear exposition of the solution to (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Truth, reflection, and hierarchies.Michael Glanzberg - 2005 - Synthese 142 (3):289 - 315.
    A common objection to hierarchical approaches to truth is that they fragment the concept of truth. This paper defends hierarchical approaches in general against the objection of fragmentation. It argues that the fragmentation required is familiar and unprob-lematic, via a comparison with mathematical proof. Furthermore, it offers an explanation of the source and nature of the fragmentation of truth. Fragmentation arises because the concept exhibits a kind of failure of closure under reflection. This paper offers a more precise characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Intuitionism in the Philosophy of Mathematics: Introducing a Phenomenological Account.Philipp Berghofer - 2020 - Philosophia Mathematica 28 (2):204-235.
    The aim of this paper is to establish a phenomenological mathematical intuitionism that is based on fundamental phenomenological-epistemological principles. According to this intuitionism, mathematical intuitions are sui generis mental states, namely experiences that exhibit a distinctive phenomenal character. The focus is on two questions: what does it mean to undergo a mathematical intuition and what role do mathematical intuitions play in mathematical reasoning? While I crucially draw on Husserlian principles and adopt ideas we find in phenomenologically minded mathematicians such as (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the Concept of Finitism.Luca Incurvati - 2015 - Synthese 192 (8):2413-2436.
    At the most general level, the concept of finitism is typically characterized by saying that finitistic mathematics is that part of mathematics which does not appeal to completed infinite totalities and is endowed with some epistemological property that makes it secure or privileged. This paper argues that this characterization can in fact be sharpened in various ways, giving rise to different conceptions of finitism. The paper investigates these conceptions and shows that they sanction different portions of mathematics as finitistic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Russellian influence on Hilbert and his school.Paolo Mancosu - 2003 - Synthese 137 (1-2):59 - 101.
    The aim of the paper is to discuss the influence exercised by Russell's thought inGöttingen in the period leading to the formulation of Hilbert's program in theearly twenties. I show that after a period of intense foundational work, culminatingwith the departure from Göttingen of Zermelo and Grelling in 1910 we witnessa reemergence of interest in foundations of mathematics towards the end of 1914. Itis this second period of foundational work that is my specific interest. Through theuse of unpublished archival sources (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Proof-theoretic reduction as a philosopher's tool.Thomas Hofweber - 2000 - Erkenntnis 53 (1-2):127-146.
    Hilbert’s program in the philosophy of mathematics comes in two parts. One part is a technical part. To carry out this part of the program one has to prove a certain technical result. The other part of the program is a philosophical part. It is concerned with philosophical questions that are the real aim of the program. To carry out this part one, basically, has to show why the technical part answers the philosophical questions one wanted to have answered. Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations