Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Methodological Roles of Tolerance and Conventionalism in the Philosophy of Mathematics: Reconsidering Carnap's Logic of Science.Emerson P. Doyle - 2014 - Dissertation, University of Western Ontario
    This dissertation makes two primary contributions. The first three chapters develop an interpretation of Carnap's Meta-Philosophical Program which places stress upon his methodological analysis of the sciences over and above the Principle of Tolerance. Most importantly, I suggest, is that Carnap sees philosophy as contiguous with science—as a part of the scientific enterprise—so utilizing the very same methods and subject to the same limitations. I argue that the methodological reforms he suggests for philosophy amount to philosophy as the explication of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Role of Symmetry in Mathematics.Noson S. Yanofsky & Mark Zelcer - 2017 - Foundations of Science 22 (3):495-515.
    Over the past few decades the notion of symmetry has played a major role in physics and in the philosophy of physics. Philosophers have used symmetry to discuss the ontology and seeming objectivity of the laws of physics. We introduce several notions of symmetry in mathematics and explain how they can also be used in resolving different problems in the philosophy of mathematics. We use symmetry to discuss the objectivity of mathematics, the role of mathematical objects, the unreasonable effectiveness of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Categorical foundations of mathematics or how to provide foundations for abstract mathematics.Jean-Pierre Marquis - 2013 - Review of Symbolic Logic 6 (1):51-75.
    Fefermans argument is indeed convincing in a certain context, it can be dissolved entirely by modifying the context appropriately.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)J ean -p ierre M arquis . From a geometrical point of view: A study of the history and philosophy of category theory.Molly Kao, Nicolas Fillion & John Bell - 2010 - Philosophia Mathematica 18 (2):227-234.
    (No abstract is available for this citation).
    Download  
     
    Export citation  
     
    Bookmark  
  • On Bourbaki’s axiomatic system for set theory.Maribel Anacona, Luis Carlos Arboleda & F. Javier Pérez-Fernández - 2014 - Synthese 191 (17):4069-4098.
    In this paper we study the axiomatic system proposed by Bourbaki for the Theory of Sets in the Éléments de Mathématique. We begin by examining the role played by the sign \(\uptau \) in the framework of its formal logical theory and then we show that the system of axioms for set theory is equivalent to Zermelo–Fraenkel system with the axiom of choice but without the axiom of foundation. Moreover, we study Grothendieck’s proposal of adding to Bourbaki’s system the axiom (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Louis Joly as a Platonist Painter?Roger Pouivet - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 337--341.
    Download  
     
    Export citation  
     
    Bookmark  
  • Towards a unified framework for decomposability of processes.Valtteri Lahtinen & Antti Stenvall - 2017 - Synthese 194 (11):4411-4427.
    The concept of process is ubiquitous in science, engineering and everyday life. Category theory, and monoidal categories in particular, provide an abstract framework for modelling processes of many kinds. In this paper, we concentrate on sequential and parallel decomposability of processes in the framework of monoidal categories: We will give a precise definition, what it means for processes to be decomposable. Moreover, through examples, we argue that viewing parallel processes as coupled in this framework can be seen as a category (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (Math, science, ?).M. Kary - 2009 - Axiomathes 19 (3):61-86.
    In science as in mathematics, it is popular to know little and resent much about category theory. Less well known is how common it is to know little and like much about set theory. The set theory of almost all scientists, and even the average mathematician, is fundamentally different from the formal set theory that is contrasted against category theory. The latter two are often opposed by saying one emphasizes Substance, the other Form. However, in all known systems of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The purpose and place of formal systems in the development of science.Bruce Edmonds - manuscript
    The aim of this paper is to re-emphasise that the purpose of formal systems is to provide something to map into and to stem the tide of unjustified formal systems. I start by arguing that expressiveness alone is not a sufficient justification for a new formal system but that it must be justified on pragmatic grounds. I then deal with a possible objection as might be raised by a pure mathematician and after that to the objection that theory can be (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Pragmatic holism.Bruce Edmonds - 1996 - Foundations of Science 4 (1):57-82.
    The reductionist/holist debate seems an impoverished one, with many participants appearing to adopt a position first and constructing rationalisations second. Here I propose an intermediate position of pragmatic holism, that irrespective of whether all natural systems are theoretically reducible, for many systems it is completely impractical to attempt such a reduction, also that regardless if whether irreducible `wholes' exist, it is vain to try and prove this in absolute terms. This position thus illuminates the debate along new pragmatic lines, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The pragmatic roots of context.Bruce Edmonds - unknown
    When modelling complex systems one can not include all the causal factors, but one has to settle for partial models. This is alright if the factors left out are either so constant that they can be ignored or one is able to recognise the circumstances when they will be such that the partial model applies. The transference of knowledge from the point of application to the point of learning utilises a combination of recognition and inference ­ a simple model of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Math, Science,?M. Kary - 2009 - Axiomathes 19 (3):321-339.
    In science as in mathematics, it is popular to know little and resent much about category theory. Less well known is how common it is to know little and like much about set theory. The set theory of almost all scientists, and even the average mathematician, is fundamentally different from the formal set theory that is contrasted against category theory. The latter two are often opposed by saying one emphasizes Substance, the other Form. However, in all known systems of mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark