Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of mathematical theorems can cover at most (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nominalism and Mathematical Objectivity.Guanglong Luo - 2022 - Axiomathes 32 (3):833-851.
    We observe that Putnam’s model-theoretic argument against determinacy of the concept of second-order quantification or that of the set is harmless to the nominalist. It serves as a good motivation for the nominalist philosophy of mathematics. But in the end it can lead to a serious challenge to the nominalist account of mathematical objectivity if some minimal assumptions about the relation between mathematical objectivity and logical objectivity are made. We consider three strategies the nominalist might take to meet this challenge, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Logical Monism?Justin Clarke-Doane - forthcoming - In Christopher Peacocke & Paul Boghossian (eds.), Normative Realism.
    Logical monism is the view that there is ‘One True Logic’. This is the default position, against which pluralists react. If there were not ‘One True Logic’, it is hard to see how there could be one true theory of anything. A theory is closed under a logic! But what is logical monism? In this article, I consider semantic, logical, modal, scientific, and metaphysical proposals. I argue that, on no ‘factualist’ analysis (according to which ‘there is One True Logic’ expresses (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Against the countable transitive model approach to forcing.Matteo de Ceglie - 2021 - In Martin Blicha & Igor Sedlár (eds.), The Logica Yearbook 2020. College Publications.
    In this paper, I argue that one of the arguments usually put forward in defence of universism is in tension with current set theoretic practice. According to universism, there is only one set theoretic universe, V, and when applying the method of forcing we are not producing new universes, but only simulating them inside V. Since the usual interpretation of set generic forcing is used to produce a “simulation” of an extension of V from a countable set inside V itself, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Arithmetic is Determinate.Zachary Goodsell - 2021 - Journal of Philosophical Logic 51 (1):127-150.
    Orthodoxy holds that there is a determinate fact of the matter about every arithmetical claim. Little argument has been supplied in favour of orthodoxy, and work of Field, Warren and Waxman, and others suggests that the presumption in its favour is unjustified. This paper supports orthodoxy by establishing the determinacy of arithmetic in a well-motivated modal plural logic. Recasting this result in higher-order logic reveals that even the nominalist who thinks that there are only finitely many things should think that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Maximality Principles in the Hyperuniverse Programme.Sy-David Friedman & Claudio Ternullo - 2020 - Foundations of Science 28 (1):287-305.
    In recent years, one of the main thrusts of set-theoretic research has been the investigation of maximality principles for V, the universe of sets. The Hyperuniverse Programme (HP) has formulated several maximality principles, which express the maximality of V both in height and width. The paper provides an overview of the principles which have been investigated so far in the programme, as well as of the logical and model-theoretic tools which are needed to formulate them mathematically, and also briefly shows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Structural Relativity and Informal Rigour.Neil Barton - 2022 - In Gianluigi Oliveri, Claudio Ternullo & Stefano Boscolo (eds.), Objects, Structures, and Logics, FilMat Studies in the Philosophy of Mathematics. Springer. pp. 133-174.
    Informal rigour is the process by which we come to understand particular mathematical structures and then manifest this rigour through axiomatisations. Structural relativity is the idea that the kinds of structures we isolate are dependent upon the logic we employ. We bring together these ideas by considering the level of informal rigour exhibited by our set-theoretic discourse, and argue that different foundational programmes should countenance different underlying logics (intermediate between first- and second-order) for formulating set theory. By bringing considerations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maddy On The Multiverse.Claudio Ternullo - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 43-78.
    Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits ([Maddy, 2017]). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of 'multiversism', and then I proceed to analyse Maddy's concerns. Among other things, I take into account salient aspects of multiverse-related mathematics , in particular, research programmes in set theory for which the use of the multiverse seems to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Theory of Particular Sets.Paul Blain Levy - manuscript
    ZFC has sentences that quantify over all sets or all ordinals, without restriction. Some have argued that sentences of this kind lack a determinate meaning. We propose a set theory called TOPS, using Natural Deduction, that avoids this problem by speaking only about particular sets.
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cantorian Infinity and Philosophical Concepts of God.Joanna Van der Veen & Leon Horsten - 2013 - European Journal for Philosophy of Religion 5 (3):117--138.
    It is often alleged that Cantor’s views about how the set theoretic universe as a whole should be considered are fundamentally unclear. In this article we argue that Cantor’s views on this subject, at least up until around 1896, are relatively clear, coherent, and interesting. We then go on to argue that Cantor’s views about the set theoretic universe as a whole have implications for theology that have hitherto not been sufficiently recognised. However, the theological implications in question, at least (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is the Dream Solution of the Continuum Hypothesis Attainable?Joel David Hamkins - 2015 - Notre Dame Journal of Formal Logic 56 (1):135-145.
    The dream solution of the continuum hypothesis would be a solution by which we settle the continuum hypothesis on the basis of a newly discovered fundamental principle of set theory, a missing axiom, widely regarded as true. Such a dream solution would indeed be a solution, since we would all accept the new axiom along with its consequences. In this article, however, I argue that such a dream solution to $\mathrm {CH}$ is unattainable.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Structuralism and Its Ontology.Marc Gasser - 2015 - Ergo: An Open Access Journal of Philosophy 2:1-26.
    A prominent version of mathematical structuralism holds that mathematical objects are at bottom nothing but "positions in structures," purely relational entities without any sort of nature independent of the structure to which they belong. Such an ontology is often presented as a response to Benacerraf's "multiple reductions" problem, or motivated on hermeneutic grounds, as a faithful representation of the discourse and practice of mathematics. In this paper I argue that there are serious difficulties with this kind of view: its proponents (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The set-theoretic multiverse.Joel David Hamkins - 2012 - Review of Symbolic Logic 5 (3):416-449.
    The multiverse view in set theory, introduced and argued for in this article, is the view that there are many distinct concepts of set, each instantiated in a corresponding set-theoretic universe. The universe view, in contrast, asserts that there is an absolute background set concept, with a corresponding absolute set-theoretic universe in which every set-theoretic question has a definite answer. The multiverse position, I argue, explains our experience with the enormous range of set-theoretic possibilities, a phenomenon that challenges the universe (...)
    Download  
     
    Export citation  
     
    Bookmark   111 citations  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Mathematical determinacy and the transferability of aboutness.Stephen Pollard - 2007 - Synthese 159 (1):83-98.
    Competent speakers of natural languages can borrow reference from one another. You can arrange for your utterances of ‘Kirksville’ to refer to the same thing as my utterances of ‘Kirksville’. We can then talk about the same thing when we discuss Kirksville. In cases like this, you borrow “ aboutness ” from me by borrowing reference. Now suppose I wish to initiate a line of reasoning applicable to any prime number. I might signal my intention by saying, “Let p be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Boolos on the justification of set theory.Alexander Paseau - 2007 - Philosophia Mathematica 15 (1):30-53.
    George Boolos has argued that the iterative conception of set justifies most, but not all, the ZFC axioms, and that a second conception of set, the Frege-von Neumann conception (FN), justifies the remaining axioms. This article challenges Boolos's claim that FN does better than the iterative conception at justifying the axioms in question.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Modal Pluralism and Higher‐Order Logic.Justin Clarke-Doane & William McCarthy - 2022 - Philosophical Perspectives 36 (1):31-58.
    In this article, we discuss a simple argument that modal metaphysics is misconceived, and responses to it. Unlike Quine's, this argument begins with the simple observation that there are different candidate interpretations of the predicate ‘could have been the case’. This is analogous to the observation that there are different candidate interpretations of the predicate ‘is a member of’. The argument then infers that the search for metaphysical necessities is misguided in much the way the ‘set-theoretic pluralist’ claims that the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • WHAT CAN A CATEGORICITY THEOREM TELL US?Toby Meadows - 2013 - Review of Symbolic Logic (3):524-544.
    f The purpose of this paper is to investigate categoricity arguments conducted in second order logic and the philosophical conclusions that can be drawn from them. We provide a way of seeing this result, so to speak, through a first order lens divested of its second order garb. Our purpose is to draw into sharper relief exactly what is involved in this kind of categoricity proof and to highlight the fact that we should be reserved before drawing powerful philosophical conclusions (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Realizability semantics for quantified modal logic: Generalizing flagg’s 1985 construction.Benjamin G. Rin & Sean Walsh - 2016 - Review of Symbolic Logic 9 (4):752-809.
    A semantics for quantified modal logic is presented that is based on Kleene's notion of realizability. This semantics generalizes Flagg's 1985 construction of a model of a modal version of Church's Thesis and first-order arithmetic. While the bulk of the paper is devoted to developing the details of the semantics, to illustrate the scope of this approach, we show that the construction produces (i) a model of a modal version of Church's Thesis and a variant of a modal set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Gödel's conceptual realism.Donald A. Martin - 2005 - Bulletin of Symbolic Logic 11 (2):207-224.
    Kurt Gödel is almost as famous—one might say “notorious”—for his extreme platonist views as he is famous for his mathematical theorems. Moreover his platonism is not a myth; it is well-documented in his writings. Here are two platonist declarations about set theory, the first from his paper about Bertrand Russell and the second from the revised version of his paper on the Continuum Hypotheses.Classes and concepts may, however, also be conceived as real objects, namely classes as “pluralities of things” or (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • An indeterminate universe of sets.Chris Scambler - 2020 - Synthese 197 (2):545-573.
    In this paper, I develop a view on set-theoretic ontology I call Universe-Indeterminism, according to which there is a unique but indeterminate universe of sets. I argue that Solomon Feferman’s work on semi-constructive set theories can be adapted to this project, and develop a philosophical motivation for a semi-constructive set theory closely based on Feferman’s but tailored to the Universe-Indeterminist’s viewpoint. I also compare the emergent Universe-Indeterminist view to some more familiar views on set-theoretic ontology.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Conventionalism about mathematics and logic.Hartry Field - 2022 - Noûs 57 (4):815-831.
    Conventionalism about mathematics has much in common with two other views: fictionalism and the multiverse view (aka plenitudinous platonism). The three views may differ over the existence of mathematical objects, but they agree in rejecting a certain kind of objectivity claim about mathematics, advocating instead an extreme pluralism. The early parts of the paper will try to elucidate this anti‐objectivist position, and question whether conventionalism really offers a third form of it distinct from fictionalism and the multiverse view. The paper (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Set-theoretic Multiverse as a Mathematical Plenitudinous Platonism Viewpoint( Infinity in Philosophy and Mathematics).Sakaé Fuchino - 2012 - Annals of the Japan Association for Philosophy of Science 20:49-54.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Second‐Order Logic and Set Theory.Jouko Väänänen - 2015 - Philosophy Compass 10 (7):463-478.
    Both second-order logic and set theory can be used as a foundation for mathematics, that is, as a formal language in which propositions of mathematics can be expressed and proved. We take it upon ourselves in this paper to compare the two approaches, second-order logic on one hand and set theory on the other hand, evaluating their merits and weaknesses. We argue that we should think of first-order set theory as a very high-order logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Maximality Principles in the Hyperuniverse Programme.Sy-David Friedman & Claudio Ternullo - 2023 - Foundations of Science 28 (1):287-305.
    In recent years, one of the main thrusts of set-theoretic research has been the investigation of maximality principles for V, the universe of sets. The Hyperuniverse Programme (HP) has formulated several maximality principles, which express the maximality of V both in height and width. The paper provides an overview of the principles which have been investigated so far in the programme, as well as of the logical and model-theoretic tools which are needed to formulate them mathematically, and also briefly shows (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong logics of first and second order.Peter Koellner - 2010 - Bulletin of Symbolic Logic 16 (1):1-36.
    In this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Steel’s Programme: Evidential Framework, the Core and Ultimate- L.Joan Bagaria & Claudio Ternullo - 2023 - Review of Symbolic Logic 16 (3):788-812.
    We address Steel’s Programme to identify a ‘preferred’ universe of set theory and the best axioms extending $\mathsf {ZFC}$ by using his multiverse axioms $\mathsf {MV}$ and the ‘core hypothesis’. In the first part, we examine the evidential framework for $\mathsf {MV}$, in particular the use of large cardinals and of ‘worlds’ obtained through forcing to ‘represent’ alternative extensions of $\mathsf {ZFC}$. In the second part, we address the existence and the possible features of the core of $\mathsf {MV}_T$ (where (...)
    Download  
     
    Export citation  
     
    Bookmark