Switch to: References

Citations of:

Conjecture

Synthese 111 (2):197-210 (1997)

Add citations

You must login to add citations.
  1. Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on the abc conjecture (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Knowledge and the Interplay of Practices.Jose Ferreiros - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 55--64.
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Weak Objectivity of Mathematics and Its Reasonable Effectiveness in Science.Daniele Molinini - 2020 - Axiomathes 30 (2):149-163.
    Philosophical analysis of mathematical knowledge are commonly conducted within the realist/antirealist dichotomy. Nevertheless, philosophers working within this dichotomy pay little attention to the way in which mathematics evolves and structures itself. Focusing on mathematical practice, I propose a weak notion of objectivity of mathematical knowledge that preserves the intersubjective character of mathematical knowledge but does not bear on a view of mathematics as a body of mind-independent necessary truths. Furthermore, I show how that the successful application of mathematics in science (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Mathematical concepts: Fruitfulness and naturalness.Jamie Tappenden - 2008 - In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 276--301.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Role of Axioms in Mathematics.Kenny Easwaran - 2008 - Erkenntnis 68 (3):381-391.
    To answer the question of whether mathematics needs new axioms, it seems necessary to say what role axioms actually play in mathematics. A first guess is that they are inherently obvious statements that are used to guarantee the truth of theorems proved from them. However, this may neither be possible nor necessary, and it doesn’t seem to fit the historical facts. Instead, I argue that the role of axioms is to systematize uncontroversial facts that mathematicians can accept from a wide (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given to the many contrasting meanings (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Redefining revolutions.Andrew Aberdein - 2017 - In Moti Mizrahi (ed.), The Kuhnian Image of Science: Time for a Decisive Transformation? London: Rowman & Littlefield. pp. 133–154.
    In their account of theory change in logic, Aberdein and Read distinguish 'glorious' from 'inglorious' revolutions--only the former preserves all 'the key components of a theory' [1]. A widespread view, expressed in these terms, is that empirical science characteristically exhibits inglorious revolutions but that revolutions in mathematics are at most glorious [2]. Here are three possible responses: 0. Accept that empirical science and mathematics are methodologically discontinuous; 1. Argue that mathematics can exhibit inglorious revolutions; 2. Deny that inglorious revolutions are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Prolegomena to virtue-theoretic studies in the philosophy of mathematics.James V. Martin - 2020 - Synthese 199 (1-2):1409-1434.
    Additional theorizing about mathematical practice is needed in order to ground appeals to truly useful notions of the virtues in mathematics. This paper aims to contribute to this theorizing, first, by characterizing mathematical practice as being epistemic and “objectual” in the sense of Knorr Cetina The practice turn in contemporary theory, Routledge, London, 2001). Then, it elaborates a MacIntyrean framework for extracting conceptions of the virtues related to mathematical practice so understood. Finally, it makes the case that Wittgenstein’s methodology for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond.Leo Corry - 1997 - Science in Context 10 (2):253-296.
    The ArgumentThe belief in the existence of eternal mathematical truth has been part of this science throughout history. Bourbaki, however, introduced an interesting, and rather innovative twist to it, beginning in the mid-1930s. This group of mathematicians advanced the view that mathematics is a science dealing with structures, and that it attains its results through a systematic application of the modern axiomatic method. Like many other mathematicians, past and contemporary, Bourbaki understood the historical development of mathematics as a series of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The 'Popperian Programme' and mathematics.Eduard Glas - 2001 - Studies in History and Philosophy of Science Part A 32 (1):119-137.
    Lakatos's Proofs and Refutations is usually understood as an attempt to apply Popper's methodology of science to mathematics. This view has been challenged because despite appearances the methodology expounded in it deviates considerably from what would have been a straightforward application of Popperian maxims. I take a closer look at the Popperian roots of Lakatos's philosophy of mathematics, considered not as an application but as an extension of Popper's critical programme, and focus especially on the core ideas of this programme (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The ‘Popperian Programme’ and mathematics.Eduard Glas - 2001 - Studies in History and Philosophy of Science Part A 32 (2):355-376.
    In the first part of this article I investigated the Popperian roots of Lakatos's Proofs and Refutations, which was an attempt to apply, and thereby to test, Popper's theory of knowledge in a field—mathematics—to which it had not primarily been intended to apply. While Popper's theory of knowledge stood up gloriously to this test, the new application gave rise to new insights into the heuristic of mathematical development, which necessitated further clarification and improvement of some Popperian methodological maxims. In the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation