Switch to: References

Citations of:

Mathematical concepts: Fruitfulness and naturalness

In Paolo Mancosu (ed.), The Philosophy of Mathematical Practice. Oxford, England: Oxford University Press. pp. 276--301 (2008)

Add citations

You must login to add citations.
  1. Mathematical Explanation in Practice.Ellen Lehet - 2021 - Axiomathes 31 (5):553-574.
    The connection between understanding and explanation has recently been of interest to philosophers. Inglis and Mejía-Ramos (Synthese, 2019) propose that within mathematics, we should accept a functional account of explanation that characterizes explanations as those things that produce understanding. In this paper, I start with the assumption that this view of mathematical explanation is correct and consider what we can consequently learn about mathematical explanation. I argue that this view of explanation suggests that we should shift the question of explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What Are Mathematical Coincidences ?M. Lange - 2010 - Mind 119 (474):307-340.
    Although all mathematical truths are necessary, mathematicians take certain combinations of mathematical truths to be ‘coincidental’, ‘accidental’, or ‘fortuitous’. The notion of a ‘ mathematical coincidence’ has so far failed to receive sufficient attention from philosophers. I argue that a mathematical coincidence is not merely an unforeseen or surprising mathematical result, and that being a misleading combination of mathematical facts is neither necessary nor sufficient for qualifying as a mathematical coincidence. I argue that although the components of a mathematical coincidence (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation, Existence and Natural Properties in Mathematics – A Case Study: Desargues’ Theorem.Marc Lange - 2015 - Dialectica 69 (4):435-472.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Depth and Explanation in Mathematics.Marc Lange - 2015 - Philosophia Mathematica 23 (2):196-214.
    This paper argues that in at least some cases, one proof of a given theorem is deeper than another by virtue of supplying a deeper explanation of the theorem — that is, a deeper account of why the theorem holds. There are cases of scientific depth that also involve a common abstract structure explaining a similarity between two otherwise unrelated phenomena, making their similarity no coincidence and purchasing depth by answering why questions that separate, dissimilar explanations of the two phenomena (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Induction and explanatory definitions in mathematics.Lehet Ellen - 2019 - Synthese 198 (2):1161-1175.
    In this paper, I argue that there are cases of explanatory induction in mathematics. To do so, I first introduce the notion of explanatory definition in the context of mathematical explanation. A large part of the paper is dedicated to introducing and analyzing this notion of explanatory definition and the role it plays in mathematics. After doing so, I discuss a particular inductive definition in advanced mathematics—CW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ CW}$$\end{document}-complexes—and argue that it is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Viewing-as explanations and ontic dependence.William D’Alessandro - 2020 - Philosophical Studies 177 (3):769-792.
    According to a widespread view in metaphysics and philosophy of science, all explanations involve relations of ontic dependence between the items appearing in the explanandum and the items appearing in the explanans. I argue that a family of mathematical cases, which I call “viewing-as explanations”, are incompatible with the Dependence Thesis. These cases, I claim, feature genuine explanations that aren’t supported by ontic dependence relations. Hence the thesis isn’t true in general. The first part of the paper defends this claim (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • T‐Philosophy.Chris Daly - 2022 - Metaphilosophy 53 (2-3):185-198.
    Metaphilosophy, Volume 53, Issue 2-3, Page 185-198, April 2022.
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy of Mathematical Practice — Motivations, Themes and Prospects†.Jessica Carter - 2019 - Philosophia Mathematica 27 (1):1-32.
    A number of examples of studies from the field ‘The Philosophy of Mathematical Practice’ (PMP) are given. To characterise this new field, three different strands are identified: an agent-based, a historical, and an epistemological PMP. These differ in how they understand ‘practice’ and which assumptions lie at the core of their investigations. In the last part a general framework, capturing some overall structure of the field, is proposed.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Gauss' quadratic reciprocity theorem and mathematical fruitfulness.Audrey Yap - 2011 - Studies in History and Philosophy of Science Part A 42 (3):410-415.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Justifying definitions in mathematics—going beyond Lakatos.Charlotte Werndl - 2009 - Philosophia Mathematica 17 (3):313-340.
    This paper addresses the actual practice of justifying definitions in mathematics. First, I introduce the main account of this issue, namely Lakatos's proof-generated definitions. Based on a case study of definitions of randomness in ergodic theory, I identify three other common ways of justifying definitions: natural-world justification, condition justification, and redundancy justification. Also, I clarify the interrelationships between the different kinds of justification. Finally, I point out how Lakatos's ideas are limited: they fail to show how various kinds of justification (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • A Primer on Ernst Abbe for Frege Readers.Jamie Tappenden - 2008 - Canadian Journal of Philosophy 38 (S1):31-118.
    Setting out to understand Frege, the scholar confronts a roadblock at the outset: We just have little to go on. Much of the unpublished work and correspondence is lost, probably forever. Even the most basic task of imagining Frege's intellectual life is a challenge. The people he studied with and those he spent daily time with are little known to historians of philosophy and logic. To be sure, this makes it hard to answer broad questions like: 'Who influenced Frege?' But (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Frege, Dedekind, and the Origins of Logicism.Erich H. Reck - 2013 - History and Philosophy of Logic 34 (3):242-265.
    This paper has a two-fold objective: to provide a balanced, multi-faceted account of the origins of logicism; to rehabilitate Richard Dedekind as a main logicist. Logicism should be seen as more deeply rooted in the development of modern mathematics than typically assumed, and this becomes evident by reconsidering Dedekind's writings in relation to Frege's. Especially in its Dedekindian and Fregean versions, logicism constitutes the culmination of the rise of ?pure mathematics? in the nineteenth century; and this rise brought with it (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Practice-Based Approach to the Philosophy of Logic.Ben Martin - forthcoming - In Oxford Handbook for the Philosophy of Logic. Oxford University Press.
    Philosophers of logic are particularly interested in understanding the aims, epistemology, and methodology of logic. This raises the question of how the philosophy of logic should go about these enquires. According to the practice-based approach, the most reliable method we have to investigate the methodology and epistemology of a research field is by considering in detail the activities of its practitioners. This holds just as true for logic as it does for the recognised empirical and abstract sciences. If we wish (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exploring the boundaries of conceptual evaluation.Christopher Pincock - 2010 - Philosophia Mathematica 18 (1):106-121.
    This is a critical notice of Mark Wilson's Wandering Significance.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Developments in Research on Mathematical Practice and Cognition.Alison Pease, Markus Guhe & Alan Smaill - 2013 - Topics in Cognitive Science 5 (2):224-230.
    We describe recent developments in research on mathematical practice and cognition and outline the nine contributions in this special issue of topiCS. We divide these contributions into those that address (a) mathematical reasoning: patterns, levels, and evaluation; (b) mathematical concepts: evolution and meaning; and (c) the number concept: representation and processing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Symmetry and Reformulation: On Intellectual Progress in Science and Mathematics.Josh Hunt - 2022 - Dissertation, University of Michigan
    Science and mathematics continually change in their tools, methods, and concepts. Many of these changes are not just modifications but progress---steps to be admired. But what constitutes progress? This dissertation addresses one central source of intellectual advancement in both disciplines: reformulating a problem-solving plan into a new, logically compatible one. For short, I call these cases of compatible problem-solving plans "reformulations." Two aspects of reformulations are puzzling. First, reformulating is often unnecessary. Given that we could already solve a problem using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual evaluation: epistemic.Alejandro Pérez Carballo - 2019 - In Alexis Burgess, Herman Cappelen & David Plunkett (eds.), Conceptual Engineering and Conceptual Ethics. New York, USA: Oxford University Press. pp. 304-332.
    On a view implicitly endorsed by many, a concept is epistemically better than another if and because it does a better job at ‘carving at the joints', or if the property corresponding to it is ‘more natural' than the one corresponding to another. This chapter offers an argument against this seemingly plausible thought, starting from three key observations about the way we use and evaluate concepts from en epistemic perspective: that we look for concepts that play a role in explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diversity in proof appraisal.Matthew Inglis & Andrew Aberdein - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 163-179.
    We investigated whether mathematicians typically agree about the qualities of mathematical proofs. Between-mathematician consensus in proof appraisals is an implicit assumption of many arguments made by philosophers of mathematics, but to our knowledge the issue has not previously been empirically investigated. We asked a group of mathematicians to assess a specific proof on four dimensions, using the framework identified by Inglis and Aberdein (2015). We found widespread disagreement between our participants about the aesthetics, intricacy, precision and utility of the proof, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Towards a Fictionalist Philosophy of Mathematics.Robert Knowles - 2015 - Dissertation, University of Manchester
    In this thesis, I aim to motivate a particular philosophy of mathematics characterised by the following three claims. First, mathematical sentences are generally speaking false because mathematical objects do not exist. Second, people typically use mathematical sentences to communicate content that does not imply the existence of mathematical objects. Finally, in using mathematical language in this way, speakers are not doing anything out of the ordinary: they are performing straightforward assertions. In Part I, I argue that the role played by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frameworks, models, and case studies: a new methodology for studying conceptual change in science and philosophy.Matteo De Benedetto - 2022 - Dissertation, Ludwig Maximilians Universität, München
    This thesis focuses on models of conceptual change in science and philosophy. In particular, I developed a new bootstrapping methodology for studying conceptual change, centered around the formalization of several popular models of conceptual change and the collective assessment of their improved formal versions via nine evaluative dimensions. Among the models of conceptual change treated in the thesis are Carnap’s explication, Lakatos’ concept-stretching, Toulmin’s conceptual populations, Waismann’s open texture, Mark Wilson’s patches and facades, Sneed’s structuralism, and Paul Thagard’s conceptual revolutions. (...)
    Download  
     
    Export citation  
     
    Bookmark