Citations of:
Intensional models for the theory of types
Journal of Symbolic Logic 72 (1):98-118 (2007)
Add citations
You must login to add citations.
|
|
Principia Logico-Metaphysica contains a foundational logical theory for metaphysics, mathematics, and the sciences. It includes a canonical development of Abstract Object Theory [AOT], a metaphysical theory that distinguishes between ordinary and abstract objects.This article reports on recent work in which AOT has been successfully represented and partly automated in the proof assistant system Isabelle/HOL. Initial experiments within this framework reveal a crucial but overlooked fact: a deeply-rooted and known paradox is reintroduced in AOT when the logic of complex terms is (...) |
|
|
|
In this paper I argue that deontic modals are hyperintensional, i.e. logically equivalent contents cannot be substituted in their scope. I give two arguments, one deductive and the other abductive. First, I show that the contrary thesis leads to falsity; second, I argue that a hyperintensional theory of deontic modals fares better than its rivals in terms of elegance, theoretical simplicity and explanatory power. I then propose a philosophical analysis of this thesis and outline some consequences. In Section 1 I (...) |
|
We present an embedding of quantified multimodal logics into simple type theory and prove its soundness and completeness. A correspondence between QKπ models for quantified multimodal logics and Henkin models is established and exploited. Our embedding supports the application of off-the-shelf higher-order theorem provers for reasoning within and about quantified multimodal logics. Moreover, it provides a starting point for further logic embeddings and their combinations in simple type theory. |
|
Standard approaches to proper names, based on Kripke's views, hold that the semantic values of expressions are (set-theoretic) functions from possible worlds to extensions and that names are rigid designators, i.e.\ that their values are \emph{constant} functions from worlds to entities. The difficulties with these approaches are well-known and in this paper we develop an alternative. Based on earlier work on a higher order logic that is \emph{truly intensional} in the sense that it does not validate the axiom scheme of (...) |
|
A semantic embedding of quantified conditional logic in classical higher-order logic is utilized for reducing cut-elimination in the former logic to existing results for the latter logic. The presented embedding approach is adaptable to a wide range of other logics, for many of which cut-elimination is still open. However, special attention has to be payed to cut-simulation, which may render cut-elimination as a pointless criterion. |
|
|
|
I extend theorems due to Roy Cook on third- and higher-order versions of abstraction principles and discuss the philosophical importance of results of this type. Cook demonstrated that the satisfiability of certain higher-order analogues of Hume's Principle is independent of ZFC. I show that similar analogues of Boolos's new v and Cook's own ordinal abstraction principle soap are not satisfiable at all. I argue, however, that these results do not tell significantly against the second-order versions of these principles. |
|
We define a generalization of the first-order cut-elimination method CERES to higher-order logic. At the core of lies the computation of an set of sequents from a proof π of a sequent S. A refutation of in a higher-order resolution calculus can be used to transform cut-free parts of π into a cut-free proof of S. An example illustrates the method and shows that can produce meaningful cut-free proofs in mathematics that traditional cut-elimination methods cannot reach. |