Switch to: References

Citations of:

Predicative Arithmetic

Studia Logica 48 (1):129-130 (1986)

Add citations

You must login to add citations.
  1. Replies to Rosen, Leiter, and Dutilh Novaes.Justin Clarke-Doane - 2023 - Philosophy and Phenomenological Research 107 (3):817-837.
    Gideon Rosen, Brian Leiter, and Catarina Dutilh Novaes raise deep questions about the arguments in Morality and Mathematics (M&M). Their objections bear on practical deliberation, the formulation of mathematical pluralism, the problem of universals, the argument from moral disagreement, moral ‘perception’, the contingency of our mathematical practices, and the purpose of proof. In this response, I address their objections, and the broader issues that they raise.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Observation and Intuition.Justin Clarke-Doane & Avner Ash - 2023 - In Carolin Antos, Neil Barton & Giorgio Venturi (eds.), The Palgrave Companion to the Philosophy of Set Theory. Palgrave.
    The motivating question of this paper is: ‘How are our beliefs in the theorems of mathematics justified?’ This is distinguished from the question ‘How are our mathematical beliefs reliably true?’ We examine an influential answer, outlined by Russell, championed by Gödel, and developed by those searching for new axioms to settle undecidables, that our mathematical beliefs are justified by ‘intuitions’, as our scientific beliefs are justified by observations. On this view, axioms are analogous to laws of nature. They are postulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shadows of Syntax: Revitalizing Logical and Mathematical Conventionalism.Jared Warren - 2020 - New York, USA: Oxford University Press.
    What is the source of logical and mathematical truth? This book revitalizes conventionalism as an answer to this question. Conventionalism takes logical and mathematical truth to have their source in linguistic conventions. This was an extremely popular view in the early 20th century, but it was never worked out in detail and is now almost universally rejected in mainstream philosophical circles. Shadows of Syntax is the first book-length treatment and defense of a combined conventionalist theory of logic and mathematics. It (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Predicativity and Feferman.Laura Crosilla - 2017 - In Gerhard Jäger & Wilfried Sieg (eds.), Feferman on Foundations: Logic, Mathematics, Philosophy. Cham: Springer. pp. 423-447.
    Predicativity is a notable example of fruitful interaction between philosophy and mathematical logic. It originated at the beginning of the 20th century from methodological and philosophical reflections on a changing concept of set. A clarification of this notion has prompted the development of fundamental new technical instruments, from Russell's type theory to an important chapter in proof theory, which saw the decisive involvement of Kreisel, Feferman and Schütte. The technical outcomes of predica-tivity have since taken a life of their own, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Logical Strength of Compositional Principles.Richard Heck - 2018 - Notre Dame Journal of Formal Logic 59 (1):1-33.
    This paper investigates a set of issues connected with the so-called conservativeness argument against deflationism. Although I do not defend that argument, I think the discussion of it has raised some interesting questions about whether what I call “compositional principles,” such as “a conjunction is true iff its conjuncts are true,” have substantial content or are in some sense logically trivial. The paper presents a series of results that purport to show that the compositional principles for a first-order language, taken (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)Wittgenstein Sobre as Provas Indutivas.André Porto - 2009 - Dois Pontos 6 (2).
    This paper offers a reconstruction of Wittgenstein's discussion on inductive proofs. A "algebraic version" of these indirect proofs is offered and contrasted with the usual ones in which an infinite sequence of modus pones is projected.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Strength of Truth-Theories.Richard Heck - manuscript
    This paper attempts to address the question what logical strength theories of truth have by considering such questions as: If you take a theory T and add a theory of truth to it, how strong is the resulting theory, as compared to T? It turns out that, in a wide range of cases, we can get some nice answers to this question, but only if we work in a framework that is somewhat different from those usually employed in discussions of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Moral Epistemology: The Mathematics Analogy.Justin Clarke-Doane - 2012 - Noûs 48 (2):238-255.
    There is a long tradition comparing moral knowledge to mathematical knowledge. In this paper, I discuss apparent similarities and differences between knowledge in the two areas, realistically conceived. I argue that many of these are only apparent, while others are less philosophically significant than might be thought. The picture that emerges is surprising. There are definitely differences between epistemological arguments in the two areas. However, these differences, if anything, increase the plausibility of moral realism as compared to mathematical realism. It (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics.Solomon Feferman - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:442 - 455.
    Does science justify any part of mathematics and, if so, what part? These questions are related to the so-called indispensability arguments propounded, among others, by Quine and Putnam; moreover, both were led to accept significant portions of set theory on that basis. However, set theory rests on a strong form of Platonic realism which has been variously criticized as a foundation of mathematics and is at odds with scientific realism. Recent logical results show that it is possible to directly formalize (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Mathematics and Metaphilosophy.Justin Clarke-Doane - 2022 - Cambridge: Cambridge University Press.
    This book discusses the problem of mathematical knowledge, and its broader philosophical ramifications. It argues that the problem of explaining the (defeasible) justification of our mathematical beliefs (‘the justificatory challenge’), arises insofar as disagreement over axioms bottoms out in disagreement over intuitions. And it argues that the problem of explaining their reliability (‘the reliability challenge’), arises to the extent that we could have easily had different beliefs. The book shows that mathematical facts are not, in general, empirically accessible, contra Quine, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Modal Objectivity.Justin Clarke-Doane - 2017 - Noûs 53 (2):266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)Modal Objectivity.Clarke-Doane Justin - 2017 - Noûs 53:266-295.
    It is widely agreed that the intelligibility of modal metaphysics has been vindicated. Quine's arguments to the contrary supposedly confused analyticity with metaphysical necessity, and rigid with non-rigid designators.2 But even if modal metaphysics is intelligible, it could be misconceived. It could be that metaphysical necessity is not absolute necessity – the strictest real notion of necessity – and that no proposition of traditional metaphysical interest is necessary in every real sense. If there were nothing otherwise “uniquely metaphysically significant” about (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege's Principle.Richard Heck - 1995 - In Jaakko Hintikka (ed.), From Dedekind to Gödel: Essays on the Development of the Foundations of Mathematics. Kluwer Academic Publishers.
    This paper explores the relationship between Hume's Prinicple and Basic Law V, investigating the question whether we really do need to suppose that, already in Die Grundlagen, Frege intended that HP should be justified by its derivation from Law V.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. In particular, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Russell’s Notion of Scope.Saul A. Kripke - 2005 - Mind 114 (456):1005-1037.
    Despite the renown of ‘On Denoting’, much criticism has ignored or misconstrued Russell's treatment of scope, particularly in intensional, but also in extensional contexts. This has been rectified by more recent commentators, yet it remains largely unnoticed that the examples Russell gives of scope distinctions are questionable or inconsistent with his own philosophy. Nevertheless, Russell is right: scope does matter in intensional contexts. In Principia Mathematica, Russell proves a metatheorem to the effect that the scope of a single occurrence of (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Gödel’s Disjunctive Argument†.Wesley Wrigley - 2022 - Philosophia Mathematica 30 (3):306-342.
    Gödel argued that the incompleteness theorems entail that the mind is not a machine, or that certain arithmetical propositions are absolutely undecidable. His view was that the mind is not a machine, and that no arithmetical propositions are absolutely undecidable. I argue that his position presupposes that the idealized mathematician has an ability which I call the recursive-ordinal recognition ability. I show that we have this ability if, and only if, there are no absolutely undecidable arithmetical propositions. I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computational Complexity Theory and the Philosophy of Mathematics†.Walter Dean - 2019 - Philosophia Mathematica 27 (3):381-439.
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the $\mathbf{P} \neq \mathbf{NP}$ (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert and the internal logic of mathematics.Yvon Gauthier - 1994 - Synthese 101 (1):1 - 14.
    Hilbert's programme is shown to have been inspired in part by what we can call Kronecker's programme in the foundations of an arithmetic theory of algebraic quantities.While finitism stays within the bounds of intuitive finite arithmetic, metamathematics goes beyond in the hope of recovering classical logic. The leap into the transfinite proved to be hazardous, not only from the perspective of Gödel's results, but also from a Kroneckerian point of view.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sets and supersets.Toby Meadows - 2016 - Synthese 193 (6):1875-1907.
    It is a commonplace of set theory to say that there is no set of all well-orderings nor a set of all sets. We are implored to accept this due to the threat of paradox and the ensuing descent into unintelligibility. In the absence of promising alternatives, we tend to take up a conservative stance and tow the line: there is no universe. In this paper, I am going to challenge this claim by taking seriously the idea that we can (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Pairs, sets and sequences in first-order theories.Albert Visser - 2008 - Archive for Mathematical Logic 47 (4):299-326.
    In this paper we study the idea of theories with containers, like sets, pairs, sequences. We provide a modest framework to study such theories. We prove two concrete results. First, we show that first-order theories of finite signature that have functional non-surjective ordered pairing are definitionally equivalent to extensions in the same language of the basic theory of non-surjective ordered pairing. Second, we show that a first-order theory of finite signature is sequential (is a theory of sequences) iff it is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Paradox and Potential Infinity.Charles McCarty - 2013 - Journal of Philosophical Logic 42 (1):195-219.
    We describe a variety of sets internal to models of intuitionistic set theory that (1) manifest some of the crucial behaviors of potentially infinite sets as described in the foundational literature going back to Aristotle, and (2) provide models for systems of predicative arithmetic. We close with a brief discussion of Church’s Thesis for predicative arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Groundwork for weak analysis.António M. Fernandes & Fernando Ferreira - 2002 - Journal of Symbolic Logic 67 (2):557-578.
    This paper develops the very basic notions of analysis in a weak second-order theory of arithmetic BTFA whose provably total functions are the polynomial time computable functions. We formalize within BTFA the real number system and the notion of a continuous real function of a real variable. The theory BTFA is able to prove the intermediate value theorem, wherefore it follows that the system of real numbers is a real closed ordered field. In the last section of the paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The Implicit Commitment of Arithmetical Theories and Its Semantic Core.Carlo Nicolai & Mario Piazza - 2019 - Erkenntnis 84 (4):913-937.
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Finitistic Arithmetic and Classical Logic.Mihai Ganea - 2014 - Philosophia Mathematica 22 (2):167-197.
    It can be argued that only the equational theories of some sub-elementary function algebras are finitistic or intuitive according to a certain interpretation of Hilbert's conception of intuition. The purpose of this paper is to investigate the relation of those restricted forms of equational reasoning to classical quantifier logic in arithmetic. The conclusion reached is that Edward Nelson's ‘predicative arithmetic’ program, which makes essential use of classical quantifier logic, cannot be justified finitistically and thus requires a different philosophical foundation, possibly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • La descente infinie, l’induction transfinie et le tiers exclu.Yvon Gauthier - 2009 - Dialogue 48 (1):1.
    ABSTRACT: It is argued that the equivalence, which is usually postulated to hold between infinite descent and transfinite induction in the foundations of arithmetic uses the law of excluded middle through the use of a double negation on the infinite set of natural numbers and therefore cannot be admitted in intuitionistic logic and mathematics, and a fortiori in more radical constructivist foundational schemes. Moreover it is shown that the infinite descent used in Dedekind-Peano arithmetic does not correspond to the infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the question of absolute undecidability.Peter Koellner - 2010 - In Kurt Gödel, Solomon Feferman, Charles Parsons & Stephen G. Simpson (eds.), Kurt Gödel: essays for his centennial. Ithaca, NY: Association for Symbolic Logic. pp. 153-188.
    The paper begins with an examination of Gödel's views on absolute undecidability and related topics in set theory. These views are sharpened and assessed in light of recent developments. It is argued that a convincing case can be made for axioms that settle many of the questions undecided by the standard axioms and that in a precise sense the program for large cardinals is a complete success “below” CH. It is also argued that there are reasonable scenarios for settling CH (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • The Philosophy of Nature of the Natural Realism. The Operator Algebra from Physics to Logic.Gianfranco Basti - 2022 - Philosophies 7 (6):121.
    This contribution is an essay of formal philosophy—and more specifically of formal ontology and formal epistemology—applied, respectively, to the philosophy of nature and to the philosophy of sciences, interpreted the former as the ontology and the latter as the epistemology of the modern mathematical, natural, and artificial sciences, the theoretical computer science included. I present the formal philosophy in the framework of the category theory (CT) as an axiomatic metalanguage—in many senses “wider” than set theory (ST)—of mathematics and logic, both (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the untenability of Nelson's predicativism.St Iwan - 2000 - Erkenntnis 53 (1-2):147-154.
    By combining some technical results from metamathematicalinvestigations of systems of Bounded Arithmetic, I will givean argument for the untenability of Nelson 's finitistic program,encapsulated in his book Predicative Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A theory of implicit commitment.Mateusz Łełyk & Carlo Nicolai - 2022 - Synthese 200 (4):1-26.
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still lacking. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is the Nature of Mathematical–Logical Objects?Stathis Livadas - 2017 - Axiomathes 27 (1):79-112.
    This article deals with a question of a most general, comprehensive and profound content as it is the nature of mathematical–logical objects insofar as these are considered objects of knowledge and more specifically objects of formal mathematical theories. As objects of formal theories they are dealt with in the sense they have acquired primarily from the beginnings of the systematic study of mathematical foundations in connection with logic dating from the works of G. Cantor and G. Frege in the last (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Against pluralism.A. P. Hazen - 1993 - Australasian Journal of Philosophy 71 (2):132 – 144.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Concepts and Axioms.A. S. Troelstra - 1998 - Philosophia Mathematica 6 (2):195-208.
    The paper discusses the transition from informal concepts to mathematically precise notions; examples are given, and in some detail the case of lawless sequences, a concept of intuitionistic mathematics, is discussed. A final section comments on philosophical discussions concerning intuitionistic logic in connection with a ‘theory of meaning’.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)S 3 i andV 2 i (BD).Gaisi Takeuti - 1990 - Archive for Mathematical Logic 29 (3):149-169.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Objects as Limits of Experience and the Notion of Horizon in Mathematical Theories.Stathis Livadas - 2012 - Phainomenon 25 (1):131-153.
    The present work is an attempt to bring attention to the application of several key ideas of Husserl ‘s Krisis in the construction of certain mathematical theories that claim to be altemative nonstandard versions of the standard Zermelo-Fraenkel set theory. In general, these theories refute, at least semantically, the platonistic context of the Cantorian system and to one or the other degree are motivated by the notions of the lifeworld as the pregiven holistic field of experience and that of horizon (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reductionism as resource-conscious reasoning.Godehard Link - 2000 - Erkenntnis 53 (1-2):173-193.
    Reductivist programs in logicand philosophy, especially inthe philosophy of mathematics,are reviewed. The paper argues fora ``methodological realism'' towardsnumbers and sets, but still givesreductionism an important place,albeit in methodology/epistemologyrather than in ontology proper.
    Download  
     
    Export citation  
     
    Bookmark  
  • Finite Arithmetic with Infinite Descent.Yvon Gauthier - 1989 - Dialectica 43 (4):329-337.
    SummaryFinite, or Fermat arithmetic, as we call it, differs from Peano arithmetic in that it does not involve the existence of an infinite set or Peano's induction postulate. Fermat's method of infinite descent takes the place of bound induction, and we show that a con‐structivist interpretation of logical connectives and quantifiers can account for the predicative finitary nature of Fermat's arithmetic. A non‐set‐theoretic arithemetical logic thus seems best suited to a constructivist‐inspired number theory.
    Download  
     
    Export citation  
     
    Bookmark   2 citations