Switch to: References

Citations of:

Computability and Randomness

Oxford, England: Oxford University Press (2008)

Add citations

You must login to add citations.
  1. Indeterminism and Undecidability.Klaas Landsman - forthcoming - In Undecidability, Uncomputability, and Unpredictability. Cham: Springer Nature.
    The aim of this paper is to argue that the (alleged) indeterminism of quantum mechanics, claimed by adherents of the Copenhagen interpretation since Born (1926), can be proved from Chaitin's follow-up to Goedel's (first) incompleteness theorem. In comparison, Bell's (1964) theorem as well as the so-called free will theorem-originally due to Heywood and Redhead (1983)-left two loopholes for deterministic hidden variable theories, namely giving up either locality (more precisely: local contextuality, as in Bohmian mechanics) or free choice (i.e. uncorrelated measurement (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)Probability and Randomness.Antony Eagle - 2016 - In Alan Hájek & Christopher Hitchcock (eds.), The Oxford Handbook of Probability and Philosophy. Oxford: Oxford University Press. pp. 440-459.
    Early work on the frequency theory of probability made extensive use of the notion of randomness, conceived of as a property possessed by disorderly collections of outcomes. Growing out of this work, a rich mathematical literature on algorithmic randomness and Kolmogorov complexity developed through the twentieth century, but largely lost contact with the philosophical literature on physical probability. The present chapter begins with a clarification of the notions of randomness and probability, conceiving of the former as a property of a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Low upper bounds of ideals.Antonín Kučera & Theodore A. Slaman - 2009 - Journal of Symbolic Logic 74 (2):517-534.
    We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in $\Delta _2^0 $ T-degrees for which there is a low T-upper bound.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Solomonoff Prediction and Occam’s Razor.Tom F. Sterkenburg - 2016 - Philosophy of Science 83 (4):459-479.
    Algorithmic information theory gives an idealized notion of compressibility that is often presented as an objective measure of simplicity. It is suggested at times that Solomonoff prediction, or algorithmic information theory in a predictive setting, can deliver an argument to justify Occam’s razor. This article explicates the relevant argument and, by converting it into a Bayesian framework, reveals why it has no such justificatory force. The supposed simplicity concept is better perceived as a specific inductive assumption, the assumption of effectiveness. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Inside the Muchnik degrees II: The degree structures induced by the arithmetical hierarchy of countably continuous functions.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (6):1201-1241.
    It is known that infinitely many Medvedev degrees exist inside the Muchnik degree of any nontrivial Π10 subset of Cantor space. We shed light on the fine structures inside these Muchnik degrees related to learnability and piecewise computability. As for nonempty Π10 subsets of Cantor space, we show the existence of a finite-Δ20-piecewise degree containing infinitely many finite-2-piecewise degrees, and a finite-2-piecewise degree containing infinitely many finite-Δ20-piecewise degrees 2 denotes the difference of two Πn0 sets), whereas the greatest degrees in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Equivalence of Definitions of Algorithmic Randomness.Christopher Porter - 2021 - Philosophia Mathematica 29 (2):153–194.
    In this paper, I evaluate the claim that the equivalence of multiple intensionally distinct definitions of random sequence provides evidence for the claim that these definitions capture the intuitive conception of randomness, concluding that the former claim is false. I then develop an alternative account of the significance of randomness-theoretic equivalence results, arguing that they are instances of a phenomenon I refer to as schematic equivalence. On my account, this alternative approach has the virtue of providing the plurality of definitions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Demuth randomness and computational complexity.Antonín Kučera & André Nies - 2011 - Annals of Pure and Applied Logic 162 (7):504-513.
    Demuth tests generalize Martin-Löf tests in that one can exchange the m-th component a computably bounded number of times. A set fails a Demuth test if Z is in infinitely many final versions of the Gm. If we only allow Demuth tests such that GmGm+1 for each m, we have weak Demuth randomness.We show that a weakly Demuth random set can be high and , yet not superhigh. Next, any c.e. set Turing below a Demuth random set is strongly jump-traceable.We (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fractal Analysis Illuminates the Form of Connectionist Structural Gradualness.Whitney Tabor, Pyeong Whan Cho & Emily Szkudlarek - 2013 - Topics in Cognitive Science 5 (3):634-667.
    We examine two connectionist networks—a fractal learning neural network (FLNN) and a Simple Recurrent Network (SRN)—that are trained to process center-embedded symbol sequences. Previous work provides evidence that connectionist networks trained on infinite-state languages tend to form fractal encodings. Most such work focuses on simple counting recursion cases (e.g., anbn), which are not comparable to the complex recursive patterns seen in natural language syntax. Here, we consider exponential state growth cases (including mirror recursion), describe a new training scheme that seems (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A frequentist interpretation of probability for model-based inductive inference.Aris Spanos - 2013 - Synthese 190 (9):1555-1585.
    The main objective of the paper is to propose a frequentist interpretation of probability in the context of model-based induction, anchored on the Strong Law of Large Numbers (SLLN) and justifiable on empirical grounds. It is argued that the prevailing views in philosophy of science concerning induction and the frequentist interpretation of probability are unduly influenced by enumerative induction, and the von Mises rendering, both of which are at odds with frequentist model-based induction that dominates current practice. The differences between (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Bounded-low sets and the high/low hierarchy.Huishan Wu - 2020 - Archive for Mathematical Logic 59 (7-8):925-938.
    Anderson and Csima defined a bounded jump operator for bounded-Turing reduction, and studied its basic properties. Anderson et al. constructed a low bounded-high set and conjectured that such sets cannot be computably enumerable. Ng and Yu proved that bounded-high c.e. sets are Turing complete, thus answered the conjecture positively. Wu and Wu showed that bounded-low sets can be superhigh by constructing a Turing complete bounded-low c.e. set. In this paper, we continue the study of the comparison between the bounded-jump and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The axiomatic power of Kolmogorov complexity.Laurent Bienvenu, Andrei Romashchenko, Alexander Shen, Antoine Taveneaux & Stijn Vermeeren - 2014 - Annals of Pure and Applied Logic 165 (9):1380-1402.
    The famous Gödel incompleteness theorem states that for every consistent, recursive, and sufficiently rich formal theory T there exist true statements that are unprovable in T . Such statements would be natural candidates for being added as axioms, but how can we obtain them? One classical approach is to add to some theory T an axiom that claims the consistency of T . In this paper we discuss another approach motivated by Chaitin's version of Gödel's theorem where axioms claiming the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extending and interpreting Post’s programme.S. Barry Cooper - 2010 - Annals of Pure and Applied Logic 161 (6):775-788.
    Computability theory concerns information with a causal–typically algorithmic–structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic infrastructure. Having characterised the close connection between the quantifier type of a real and the Turing jump operation, he looked for more subtle ways in which information entails a particular causal context. Specifically, he wanted to find simple relations on reals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Traces, traceability, and lattices of traces under the set theoretic inclusion.Gunther Mainhardt - 2013 - Archive for Mathematical Logic 52 (7-8):847-869.
    Let a trace be a computably enumerable set of natural numbers such that V[m]={n:〈n,m〉∈V}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V^{[m]} = \{n : \langle n, m\rangle \in V \}}$$\end{document} is finite for all m, where 〈.,.〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle^{.},^{.}\rangle}$$\end{document} denotes an appropriate pairing function. After looking at some basic properties of traces like that there is no uniform enumeration of all traces, we prove varied results on traceability and variants thereof, where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Reducibility Related To Being Hyperimmune-free.Frank Stephan & Liang Yu - 2014 - Annals of Pure and Applied Logic 165 (7-8):1291-1300.
    The main topic of the present work is the relation that a set X is strongly hyperimmune-free relative to Y . Here X is strongly hyperimmune-free relative to Y if and only if for every partial X -recursive function p there is a partial Y -recursive function q such that every a in the domain of p is also in the domain of q and satisfies p (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polynomial clone reducibility.Quinn Culver - 2014 - Archive for Mathematical Logic 53 (1-2):1-10.
    Polynomial clone reducibilities are generalizations of the truth-table reducibilities. A polynomial clone is a set of functions over a finite set X that is closed under composition and contains all the constant and projection functions. For a fixed polynomial clone ${\fancyscript{C}}$ , a sequence ${B\in X^{\omega}}$ is ${\fancyscript{C}}$ -reducible to ${A \in {X}^{\omega}}$ if there is an algorithm that computes B from A using only effectively selected functions from ${\fancyscript{C}}$ . We show that if A is Kurtz random and ${\fancyscript{C}_{1} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computation, Physics and Beyond.M. Dinneen, B. Khoussainov & A. Nies (eds.) - 2012 - Springer.
    Download  
     
    Export citation  
     
    Bookmark  
  • How Not To Use the Church-Turing Thesis Against Platonism.R. Urbaniak - 2011 - Philosophia Mathematica 19 (1):74-89.
    Olszewski claims that the Church-Turing thesis can be used in an argument against platonism in philosophy of mathematics. The key step of his argument employs an example of a supposedly effectively computable but not Turing-computable function. I argue that the process he describes is not an effective computation, and that the argument relies on the illegitimate conflation of effective computability with there being a way to find out . ‘Ah, but,’ you say, ‘what’s the use of its being right twice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The K -Degrees, Low for K Degrees,and Weakly Low for K Sets.Joseph S. Miller - 2009 - Notre Dame Journal of Formal Logic 50 (4):381-391.
    We call A weakly low for K if there is a c such that $K^A(\sigma)\geq K(\sigma)-c$ for infinitely many σ; in other words, there are infinitely many strings that A does not help compress. We prove that A is weakly low for K if and only if Chaitin's Ω is A-random. This has consequences in the K-degrees and the low for K (i.e., low for random) degrees. Furthermore, we prove that the initial segment prefix-free complexity of 2-random reals is infinitely (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Universality, optimality, and randomness deficiency.Rupert Hölzl & Paul Shafer - 2015 - Annals of Pure and Applied Logic 166 (10):1049-1069.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computably enumerable sets below random sets.André Nies - 2012 - Annals of Pure and Applied Logic 163 (11):1596-1610.
    We use Demuth randomness to study strong lowness properties of computably enumerable sets, and sometimes of Δ20 sets. A set A⊆N is called a base for Demuth randomness if some set Y Turing above A is Demuth random relative to A. We show that there is an incomputable, computably enumerable base for Demuth randomness, and that each base for Demuth randomness is strongly jump-traceable. We obtain new proofs that each computably enumerable set below all superlow Martin-Löf random sets is strongly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relativizing chaitin's halting probability.Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller & André Nies - 2005 - Journal of Mathematical Logic 5 (02):167-192.
    As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a universal prefix-free machine. We can relativize this example by considering a universal prefix-free oracle machine U. Let [Formula: see text] be the halting probability of UA; this gives a natural uniform way of producing an A-random real for every A ∈ 2ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • A-computable graphs.Matthew Jura, Oscar Levin & Tyler Markkanen - 2016 - Annals of Pure and Applied Logic 167 (3):235-246.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)How much randomness is needed for statistics?Bjørn Kjos-Hanssen, Antoine Taveneaux & Neil Thapen - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 395--404.
    In algorithmic randomness, when one wants to define a randomness notion with respect to some non-computable measure λ, a choice needs to be made. One approach is to allow randomness tests to access the measure λ as an oracle . The other approach is the opposite one, where the randomness tests are completely effective and do not have access to the information contained in λ . While the Hippocratic approach is in general much more restrictive, there are cases where the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lowness for Kurtz randomness.Noam Greenberg & Joseph S. Miller - 2009 - Journal of Symbolic Logic 74 (2):665-678.
    We prove that degrees that are low for Kurtz randomness cannot be diagonally non-recursive. Together with the work of Stephan and Yu [16], this proves that they coincide with the hyperimmune-free non-DNR degrees, which are also exactly the degrees that are low for weak 1-genericity. We also consider Low(M, Kurtz), the class of degrees a such that every element of M is a-Kurtz random. These are characterised when M is the class of Martin-Löf random, computably random, or Schnorr random reals. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A DNC function that computes no effectively bi-immune set.Achilles A. Beros - 2015 - Archive for Mathematical Logic 54 (5-6):521-530.
    Jockusch and Lewis proved that every DNC function computes a bi-immune set. They asked whether every DNC function computes an effectively bi-immune set. We construct a DNC function that computes no effectively bi-immune set, thereby answering their question in the negative.
    Download  
     
    Export citation  
     
    Bookmark   1 citation