Switch to: References

Add citations

You must login to add citations.
  1. More trouble for regular probabilitites.Matthew W. Parker - 2012
    In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly reasonable (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Cantor, Choice, and Paradox.Nicholas DiBella - 2024 - The Philosophical Review 133 (3):223-263.
    I propose a revision of Cantor’s account of set size that understands comparisons of set size fundamentally in terms of surjections rather than injections. This revised account is equivalent to Cantor's account if the Axiom of Choice is true, but its consequences differ from those of Cantor’s if the Axiom of Choice is false. I argue that the revised account is an intuitive generalization of Cantor’s account, blocks paradoxes—most notably, that a set can be partitioned into a set that is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cosmic Skepticism and the Beginning of Physical Reality (Doctoral Dissertation).Linford Dan - 2022 - Dissertation, Purdue University
    This dissertation is concerned with two of the largest questions that we can ask about the nature of physical reality: first, whether physical reality begin to exist and, second, what criteria would physical reality have to fulfill in order to have had a beginning? Philosophers of religion and theologians have previously addressed whether physical reality began to exist in the context of defending the Kal{\'a}m Cosmological Argument (KCA) for theism, that is, (P1) everything that begins to exist has a cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2019 - European Journal for Philosophy of Science 9 (1):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson and Benci et al. have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Symmetry arguments against regular probability: A reply to recent objections.Matthew W. Parker - 2018 - European Journal for Philosophy of Science 9 (1):8.
    A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counter-arguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson is speaking (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Principles of Liberty: A Design-based Research on Liberty as A Priori Constitutive Principle of the Social in the Swiss Nation Story.Tabea Hirzel - 2015 - Dissertation, Scm University, Zug, Switzerland
    One of the still unsolved problems in liberal anarchism is a definition of social constituency in positive terms. Partially, this had been solved by the advancements of liberal discourse ethics. These approaches, built on praxeology as a universal framework for social formation, are detached from the need of any previous or external authority or rule for the discursive partners. However, the relationship between action, personal identity, and liberty within the process of a community becoming solely generated from the praxeological a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cantor's Abstractionism and Hume's Principle.Claudio Ternullo & Luca Zanetti - 2021 - History and Philosophy of Logic 43 (3):284-300.
    Richard Kimberly Heck and Paolo Mancosu have claimed that the possibility of non-Cantorian assignments of cardinalities to infinite concepts shows that Hume's Principle (HP) is not implicit in the concept of cardinal number. Neologicism would therefore be threatened by the ‘good company' HP is kept by such alternative assignments. In his review of Mancosu's book, Bob Hale argues, however, that ‘getting different numerosities for different countable infinite collections depends on taking the groups in a certain order – but it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A grounding-based measure of relative fundamentality.Jonas Werner - 2020 - Synthese 198 (10):9721-9737.
    Reality is hierarchically structured, or so proponents of the metaphysical posit of grounding argue. The less fundamental facts obtain in virtue of, or are grounded in, the more fundamental facts. But what exactly is it for one fact to be more fundamental than another? The aim of this paper is to provide a measure of relative fundamentality. I develop and defend an account of the metaphysical hierarchy that assigns to each fact a set of ordinals representing the levels on which (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Sizes of Countable Sets.Kateřina Trlifajová - 2024 - Philosophia Mathematica 32 (1):82-114.
    The paper introduces the notion of size of countable sets, which preserves the Part-Whole Principle. The sizes of the natural and the rational numbers, their subsets, unions, and Cartesian products are algorithmically enumerable as sequences of natural numbers. The method is similar to that of Numerosity Theory, but in comparison it is motivated by Bolzano’s concept of infinite series, it is constructive because it does not use ultrafilters, and set sizes are uniquely determined. The results mostly agree, but some differ, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel's Argument for Cantorian Cardinality.Matthew W. Parker - 2017 - Noûs 53 (2):375-393.
    On the first page of “What is Cantor's Continuum Problem?”, Gödel argues that Cantor's theory of cardinality, where a bijection implies equal number, is in some sense uniquely determined. The argument, involving a thought experiment with sets of physical objects, is initially persuasive, but recent authors have developed alternative theories of cardinality that are consistent with the standard set theory ZFC and have appealing algebraic features that Cantor's powers lack, as well as some promise for applications. Here we diagnose Gödel's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Weintraub’s response to Williamson’s coin flip argument.Matthew W. Parker - 2021 - European Journal for Philosophy of Science 11 (3):1-21.
    A probability distribution is regular if it does not assign probability zero to any possible event. Williamson argued that we should not require probabilities to be regular, for if we do, certain “isomorphic” physical events must have different probabilities, which is implausible. His remarks suggest an assumption that chances are determined by intrinsic, qualitative circumstances. Weintraub responds that Williamson’s coin flip events differ in their inclusion relations to each other, or the inclusion relations between their times, and this can account (...)
    Download  
     
    Export citation  
     
    Bookmark