Citations of:
Add citations
You must login to add citations.


A probability distribution is regular if it does not assign probability zero to any possible event. While some hold that probabilities should always be regular, three counterarguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson and Benci et al. have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s “isomorphic” events are not in fact isomorphic, but Howson is speaking (...) 

A probability distribution is regular if no possible event is assigned probability zero. While some hold that probabilities should always be regular, three counterarguments have been posed based on examples where, if regularity holds, then perfectly similar events must have different probabilities. Howson (2017) and Benci et al. (2016) have raised technical objections to these symmetry arguments, but we see here that their objections fail. Howson says that Williamson’s (2007) “isomorphic” events are not in fact isomorphic, but Howson is speaking (...) 

NonArchimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a nonArchimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. 

In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by spacetime invariant physical laws, and regular credences cannot satisfy seemingly reasonable (...) 

On the first page of “What is Cantor's Continuum Problem?”, Gödel argues that Cantor's theory of cardinality, where a bijection implies equal number, is in some sense uniquely determined. The argument, involving a thought experiment with sets of physical objects, is initially persuasive, but recent authors have developed alternative theories of cardinality that are consistent with the standard set theory ZFC and have appealing algebraic features that Cantor's powers lack, as well as some promise for applications. Here we diagnose Gödel's (...) 