Switch to: References

Add citations

You must login to add citations.
  1. (3 other versions)Function-Theoretic Explanation and the Search for Neural Mechanisms.Frances Egan - 2017 - In David Michael Kaplan (ed.), Explanation and Integration in Mind and Brain Science. Oxford, United Kingdom: Oxford University Press. pp. 145-163.
    A common kind of explanation in cognitive neuroscience might be called functiontheoretic: with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes (in the system’s normal environment) the exercise of the cognitive capacity. Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the extent that it reveals (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Explanation and description in computational neuroscience.David Michael Kaplan - 2011 - Synthese 183 (3):339-373.
    The central aim of this paper is to shed light on the nature of explanation in computational neuroscience. I argue that computational models in this domain possess explanatory force to the extent that they describe the mechanisms responsible for producing a given phenomenon—paralleling how other mechanistic models explain. Conceiving computational explanation as a species of mechanistic explanation affords an important distinction between computational models that play genuine explanatory roles and those that merely provide accurate descriptions or predictions of phenomena. It (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • Computationalism in the Philosophy of Mind.Gualtiero Piccinini - 2009 - Philosophy Compass 4 (3):515-532.
    Computationalism has been the mainstream view of cognition for decades. There are periodic reports of its demise, but they are greatly exaggerated. This essay surveys some recent literature on computationalism. It concludes that computationalism is a family of theories about the mechanisms of cognition. The main relevant evidence for testing it comes from neuroscience, though psychology and AI are relevant too. Computationalism comes in many versions, which continue to guide competing research programs in philosophy of mind as well as psychology (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Functional integration and the mind.Jakob Hohwy - 2007 - Synthese 159 (3):315-328.
    Different cognitive functions recruit a number of different, often overlapping, areas of the brain. Theories in cognitive and computational neuroscience are beginning to take this kind of functional integration into account. The contributions to this special issue consider what functional integration tells us about various aspects of the mind such as perception, language, volition, agency, and reward. Here, I consider how and why functional integration may matter for the mind; I discuss a general theoretical framework, based on generative models, that (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Social AI and The Equation of Wittgenstein’s Language User With Calvino’s Literature Machine.Warmhold Jan Thomas Mollema - 2024 - International Review of Literary Studies 6 (1):39-55.
    Is it sensical to ascribe psychological predicates to AI systems like chatbots based on large language models (LLMs)? People have intuitively started ascribing emotions or consciousness to social AI (‘affective artificial agents’), with consequences that range from love to suicide. The philosophical question of whether such ascriptions are warranted is thus very relevant. This paper advances the argument that LLMs instantiate language users in Ludwig Wittgenstein’s sense but that ascribing psychological predicates to these systems remains a functionalist temptation. Social AIs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)(2008) Epistemologically Different Worlds.Gabriel Vacariu - 2008
    3.2.2. The principle of conceptual containment ........................... 116 3.3.3. The physical human subject or the “I” ............................... 119 3.4. The hyperverse and its EDWs – the antimetaphysical foundation of the EDWs perspective ........................................... 150 Part II. Applications Chapter 4. Applications to some notions from philosophy of mind .. 159 4.1. Levels and reduction vs. emergence ............................................. 160 4.2. Qualia, Kant and the “I” ............................................................... 181 4.3. Mental causation and supervenience ............................................ 190 Chapter 5. Applications to some notions from cognitive science (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Integrating Philosophy of Understanding with the Cognitive Sciences.Kareem Khalifa, Farhan Islam, J. P. Gamboa, Daniel Wilkenfeld & Daniel Kostić - 2022 - Frontiers in Systems Neuroscience 16.
    We provide two programmatic frameworks for integrating philosophical research on understanding with complementary work in computer science, psychology, and neuroscience. First, philosophical theories of understanding have consequences about how agents should reason if they are to understand that can then be evaluated empirically by their concordance with findings in scientific studies of reasoning. Second, these studies use a multitude of explanations, and a philosophical theory of understanding is well suited to integrating these explanations in illuminating ways.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • When No Laughing Matter Is No Laughing Matter: The Challenges in Developing a Cognitive Theory of Humor.Eric Hochstein - 2021 - The Philosophy of Humor Yearbook 2 (1):87-110.
    This paper explores the current obstacles that a cognitive theory of humor faces. More specifically, I argue that the nebulous and ill-defined nature of humor makes it difficult to tell what counts as clear instances of, and deficits in, the phenomenon.Without getting clear on this, we cannot identify the underlying cognitive mechanisms responsible for humor. Moreover, being too quick to draw generalizations regarding the ubiquity of humor, or its uniqueness to humans, without substantially clarifying the phenomenon and its occurrences is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Making too many enemies: Hutto and Myin’s attack on computationalism.Jesse Kuokkanen & Anna-Mari Rusanen - 2018 - Philosophical Explorations 21 (2):282-294.
    We analyse Hutto & Myin's three arguments against computationalism [Hutto, D., E. Myin, A. Peeters, and F. Zahnoun. Forthcoming. “The Cognitive Basis of Computation: Putting Computation In Its Place.” In The Routledge Handbook of the Computational Mind, edited by M. Sprevak, and M. Colombo. London: Routledge.; Hutto, D., and E. Myin. 2012. Radicalizing Enactivism: Basic Minds Without Content. Cambridge, MA: MIT Press; Hutto, D., and E. Myin. 2017. Evolving Enactivism: Basic Minds Meet Content. Cambridge, MA: MIT Press]. The Hard Problem (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The search of “canonical” explanations for the cerebral cortex.Alessio Plebe - 2018 - History and Philosophy of the Life Sciences 40 (3):40.
    This paper addresses a fundamental line of research in neuroscience: the identification of a putative neural processing core of the cerebral cortex, often claimed to be “canonical”. This “canonical” core would be shared by the entire cortex, and would explain why it is so powerful and diversified in tasks and functions, yet so uniform in architecture. The purpose of this paper is to analyze the search for canonical explanations over the past 40 years, discussing the theoretical frameworks informing this research. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What is a Computer? A Survey.William J. Rapaport - 2018 - Minds and Machines 28 (3):385-426.
    A critical survey of some attempts to define ‘computer’, beginning with some informal ones, then critically evaluating those of three philosophers, and concluding with an examination of whether the brain and the universe are computers.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reconciling New Mechanism and Psychological Explanation: A Pragmatic Approach.Michael De Vivo - unknown
    Recently, Gualtiero Piccinini and Carl Craver have argued that functional analyses in psychology lack explanatory autonomy from explanations in neuroscience. In this thesis I argue against this claim by motivating and defending a pragmatic-epistemic conception of autonomous psychological explanation. I argue that this conception of autonomy need not require that functional analyses be distinct in kind from neural-mechanistic explanations. I use the framework of Bas van Fraassen’s Pragmatic Theory of Explanation to show that explanations in psychology and neuroscience can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Troubles with Cognitive Neuroscience.Gabriel Vacariu & Mihai Vacariu - 2013 - Philosophia Scientiae 17:151-170.
    This special issue is dedicated to one of the oldest and most controversial philosophical topics, the mind–body problem. Paradoxically, since Descartes until the present days, nobody has proposed a viable solution to this problem. In the last decades, through the unification of neuroscience and psychology, a new science, cognitive neuroscience, was created to deal with this problem. Using EEG, fMRI, and other apparatus, scientists try to grasp the “correlations” between any mental state and some neural patterns of activation. Articles and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Unplanned Obsolescence of Psychological Science and an Argument for its Revival.Stan Klein - 2016 - Psychology of Consciousness: Theory, Research, and Practice 3:357-379.
    I examine some of the key scientific pre-commitments of modern psychology, and argue that their adoption has the unintended consequence of rendering a purely psychological analysis of mind indistinguishable from a purely biological treatment. And, since these pre-commitments sanction an “authority of the biological”, explanation of phenomena traditionally considered the purview of psychological analysis is fully subsumed under the biological. I next evaluate the epistemic warrant of these pre-commitments and suggest there are good reasons to question their applicability to psychological (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience.M. Chirimuuta - 2014 - Synthese 191 (2):127-153.
    In a recent paper, Kaplan (Synthese 183:339–373, 2011) takes up the task of extending Craver’s (Explaining the brain, 2007) mechanistic account of explanation in neuroscience to the new territory of computational neuroscience. He presents the model to mechanism mapping (3M) criterion as a condition for a model’s explanatory adequacy. This mechanistic approach is intended to replace earlier accounts which posited a level of computational analysis conceived as distinct and autonomous from underlying mechanistic details. In this paper I discuss work in (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • (3 other versions)Function-Theoretic Explanation and the Search for Neural Mechanisms.Frances Egan - 2017 - In David Michael Kaplan (ed.), Explanation and Integration in Mind and Brain Science. Oxford, United Kingdom: Oxford University Press. pp. 145-163.
    A common kind of explanation in cognitive neuroscience might be called function-theoretic: with some target cognitive capacity in view, the theorist hypothesizes that the system computes a well-defined function (in the mathematical sense) and explains how computing this function constitutes the exercise of the cognitive capacity (in the system's normal environment). Recently, proponents of the so-called ‘new mechanist’ approach in philosophy of science have argued that a model of a cognitive capacity is explanatory only to the extent that it reveals (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Constitutive relevance and the personal/subpersonal distinction.Matteo Colombo - 2012 - Philosophical Psychology (ahead-of-print):1–24.
    Can facts about subpersonal states and events be constitutively relevant to personal-level phenomena? And can knowledge of these facts inform explanations of personal-level phenomena? Some philosophers, like Jennifer Hornsby and John McDowell, argue for two negative answers whereby questions about persons and their behavior cannot be answered by using information from subpersonal psychology. Knowledge of subpersonal states and events cannot inform personal-level explanation such that they cast light on what constitutes persons? behaviors. In this paper I argue against this position. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The role of the environment in computational explanations.Jens Harbecke & Oron Shagrir - 2019 - European Journal for Philosophy of Science 9 (3):1-19.
    The mechanistic view of computation contends that computational explanations are mechanistic explanations. Mechanists, however, disagree about the precise role that the environment – or the so-called “contextual level” – plays for computational explanations. We advance here two claims: Contextual factors essentially determine the computational identity of a computing system ; this means that specifying the “intrinsic” mechanism is not sufficient to fix the computational identity of the system. It is not necessary to specify the causal-mechanistic interaction between the system and (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Unbearable Shallow Understanding of Deep Learning.Alessio Plebe & Giorgio Grasso - 2019 - Minds and Machines 29 (4):515-553.
    This paper analyzes the rapid and unexpected rise of deep learning within Artificial Intelligence and its applications. It tackles the possible reasons for this remarkable success, providing candidate paths towards a satisfactory explanation of why it works so well, at least in some domains. A historical account is given for the ups and downs, which have characterized neural networks research and its evolution from “shallow” to “deep” learning architectures. A precise account of “success” is given, in order to sieve out (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computation in cognitive science: it is not all about Turing-equivalent computation.Kenneth Aizawa - 2010 - Studies in History and Philosophy of Science Part A 41 (3):227-236.
    It is sometimes suggested that the history of computation in cognitive science is one in which the formal apparatus of Turing-equivalent computation, or effective computability, was exported from mathematical logic to ever wider areas of cognitive science and its environs. This paper, however, indicates some respects in which this suggestion is inaccurate. Computability theory has not been focused exclusively on Turing-equivalent computation. Many essential features of Turing-equivalent computation are not captured in definitions of computation as symbol manipulation. Turing-equivalent computation did (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On computational explanations.Anna-Mari Rusanen & Otto Lappi - 2016 - Synthese 193 (12):3931-3949.
    Computational explanations focus on information processing required in specific cognitive capacities, such as perception, reasoning or decision-making. These explanations specify the nature of the information processing task, what information needs to be represented, and why it should be operated on in a particular manner. In this article, the focus is on three questions concerning the nature of computational explanations: What type of explanations they are, in what sense computational explanations are explanatory and to what extent they involve a special, “independent” (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The methodological role of mechanistic-computational models in cognitive science.Jens Harbecke - 2020 - Synthese 199 (Suppl 1):19-41.
    This paper discusses the relevance of models for cognitive science that integrate mechanistic and computational aspects. Its main hypothesis is that a model of a cognitive system is satisfactory and explanatory to the extent that it bridges phenomena at multiple mechanistic levels, such that at least several of these mechanistic levels are shown to implement computational processes. The relevant parts of the computation must be mapped onto distinguishable entities and activities of the mechanism. The ideal is contrasted with two other (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Solely Generic Phenomenology.Ned Block - 2015 - Open MIND 2015.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The notion of computation is fundamental to an autonomous neuroscience.Garrett Neske - 2010 - Complexity 16 (1):10-19.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Remarks on a Structural Account of Scientific Explanation.Laura Felline - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 43--53.
    The problems that exist in relating quantum mechanical phenomena to classical concepts like properties, causes, or entities like particles or waves are well-known and still open to question, so that there is not yet an agreement on what kind of metaphysics lies at the foundations of quantum mechanics. However, physicists constantly use the formal resources of quantum mechanics in order to explain quantum phenomena. The structural account of explanation, therefore, tries to account for this kind of mathematical explanation in physics, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Constitutive relevance and the personal/subpersonal distinction.Matteo Colombo - 2013 - Philosophical Psychology 26 (4):547-570.
    Can facts about subpersonal states and events be constitutively relevant to personal-level phenomena? And can knowledge of these facts inform explanations of personal-level phenomena? Some philosophers, like Jennifer Hornsby and John McDowell, argue for two negative answers whereby questions about persons and their behavior cannot be answered by using information from subpersonal psychology. Knowledge of subpersonal states and events cannot inform personal-level explanation such that they cast light on what constitutes persons’ behaviors. In this paper I argue against this position. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations