Switch to: References

Citations of:

2-element matrices

Studia Logica 40 (4):315 - 353 (1981)

Add citations

You must login to add citations.
  1. Modular Many-Valued Semantics for Combined Logics.Carlos Caleiro & Sérgio Marcelino - 2024 - Journal of Symbolic Logic 89 (2):583-636.
    We obtain, for the first time, a modular many-valued semantics for combined logics, which is built directly from many-valued semantics for the logics being combined, by means of suitable universal operations over partial non-deterministic logical matrices. Our constructions preserve finite-valuedness in the context of multiple-conclusion logics, whereas, unsurprisingly, it may be lost in the context of single-conclusion logics. Besides illustrating our constructions over a wide range of examples, we also develop concrete applications of our semantic characterizations, namely regarding the semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Unexpected Boolean Connective.Sérgio Marcelino - 2022 - Logica Universalis 16 (1):85-103.
    We consider a 2-valued non-deterministic connective \({\wedge \!\!\!\!\!\vee }\) defined by the table resulting from the entry-wise union of the tables of conjunction and disjunction. Being half conjunction and half disjunction we named it _platypus_. The value of \({\wedge \!\!\!\!\!\vee }\) is not completely determined by the input, contrasting with usual notion of Boolean connective. We call non-deterministic Boolean connective any connective based on multi-functions over the Boolean set. In this way, non-determinism allows for an extended notion of truth-functional connective. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Safe Contraction Revisited.Hans Rott & Sven Ove Hansson - 2014 - In Sven Ove Hansson (ed.), David Makinson on Classical Methods for Non-Classical Problems (Outstanding Contributions to Logic, Vol. 3). Springer. pp. 35–70.
    Modern belief revision theory is based to a large extent on partial meet contraction that was introduced in the seminal article by Carlos Alchourrón, Peter Gärdenfors, and David Makinson that appeared in 1985. In the same year, Alchourrón and Makinson published a significantly different approach to the same problem, called safe contraction. Since then, safe contraction has received much less attention than partial meet contraction. The present paper summarizes the current state of knowledge on safe contraction, provides some new results (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Finite replacement and finite Hilbert-style axiomatizability.B. Herrmann & W. Rautenberg - 1992 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38 (1):327-344.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Replacing Modus Ponens With One-Premiss Rules.Lloyd Humberstone - 2008 - Logic Journal of the IGPL 16 (5):431-451.
    After some motivating remarks in Section 1, in Section 2 we show how to replace an axiomatic basis for any one of a broad range of sentential logics having finitely many axiom schemes and Modus Ponens as the sole proper rule, by a basis with the same axiom schemes and finitely many one-premiss rules. Section 3 mentions some questions arising from this replacement procedure , explores another such procedure, and discusses some aspects of the consequence relations associated with the different (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Juxtaposition: A New Way to Combine Logics.Joshua Schechter - 2011 - Review of Symbolic Logic 4 (4):560-606.
    This paper develops a new framework for combining propositional logics, called "juxtaposition". Several general metalogical theorems are proved concerning the combination of logics by juxtaposition. In particular, it is shown that under reasonable conditions, juxtaposition preserves strong soundness. Under reasonable conditions, the juxtaposition of two consequence relations is a conservative extension of each of them. A general strong completeness result is proved. The paper then examines the philosophically important case of the combination of classical and intuitionist logics. Particular attention is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Algebraic logic for classical conjunction and disjunction.Josep M. Font & Ventura Verdú - 1991 - Studia Logica 50 (3-4):391 - 419.
    In this paper we study the relations between the fragment L of classical logic having just conjunction and disjunction and the variety D of distributive lattices, within the context of Algebraic Logic. We prove that these relations cannot be fully expressed either with the tools of Blok and Pigozzi's theory of algebraizable logics or with the use of reduced matrices for L. However, these relations can be naturally formulated when we introduce a new notion of model of a sequent calculus. (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On the logic of distributive nearlattices.Luciano J. González - 2022 - Mathematical Logic Quarterly 68 (3):375-385.
    We study the propositional logic associated with the variety of distributive nearlattices. We prove that the logic coincides with the assertional logic associated with the variety and with the order‐based logic associated with. We obtain a characterization of the reduced matrix models of logic. We develop a connection between the logic and the ‐fragment of classical logic. Finally, we present two Hilbert‐style axiomatizations for the logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Combining logics.Walter Carnielli & Marcelo E. Coniglio - 2008 - Stanford Encyclopedia of Philosophy.
    Although a very recent topic in contemporary logic, the subject of combinations of logics has already shown its deep possibilities. Besides the pure philosophical interest offered by the possibility of defining mixed logic systems in which distinct operators obey logics of different nature, there are also several pragmatical and methodological reasons for considering combined logics. We survey methods for combining logics (integration of several logic systems into a homogeneous environment) as well as methods for decomposing logics, showing their interesting properties (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Characterizing equivalential and algebraizable logics by the Leibniz operator.Burghard Herrmann - 1997 - Studia Logica 58 (2):305-323.
    In [14] we used the term finitely algebraizable for algebraizable logics in the sense of Blok and Pigozzi [2] and we introduced possibly infinitely algebraizable, for short, p.i.-algebraizable logics. In the present paper, we characterize the hierarchy of protoalgebraic, equivalential, finitely equivalential, p.i.-algebraizable, and finitely algebraizable logics by properties of the Leibniz operator. A Beth-style definability result yields that finitely equivalential and finitely algebraizable as well as equivalential and p.i.-algebraizable logics can be distinguished by injectivity of the Leibniz operator. Thus, (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Sentence connectives in formal logic.Lloyd Humberstone - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A calculus for the common rules of ∧ and ∨.Wolfgang Rautenberg - 1989 - Studia Logica 48 (4):531-537.
    We provide a finite axiomatization of the consequence , i.e. of the set of common sequential rules for and . Moreover, we show that has no proper non-trivial strengthenings other than and . A similar result is true for , but not, e.g., for +.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Suszko operator. Part I.Janusz Czelakowski - 2003 - Studia Logica 74 (1-2):181 - 231.
    The paper is conceived as a first study on the Suszko operator. The purpose of this paper is to indicate the existence of close relations holding between the properties of the Suszko operator and the structural properties of the model class for various sentential logics. The emphasis is put on generality both of the results and methods of tackling the problems that arise in the theory of this operator. The attempt is made here to develop the theory for non-protoalgebraic logics.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Algebraic logic for the negation fragment of classical logic.Luciano J. González - forthcoming - Logic Journal of the IGPL.
    The general aim of this article is to study the negation fragment of classical logic within the framework of contemporary (Abstract) Algebraic Logic. More precisely, we shall find the three classes of algebras that are canonically associated with a logic in Algebraic Logic, i.e. we find the classes |$\textrm{Alg}^*$|⁠, |$\textrm{Alg}$| and the intrinsic variety of the negation fragment of classical logic. In order to achieve this, firstly, we propose a Hilbert-style axiomatization for this fragment. Then, we characterize the reduced matrix (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatization of semigroup consequences.Wolfgang Rautenberg - 1989 - Archive for Mathematical Logic 29 (2):111-123.
    We show (1) the consequence determined by a variety V of algebraic semigroup matrices is finitely based iffV is finitely based, (2) the consequence determined by all 2-valued semigroup connectives, Λ, ∨, ↔, +, in other words the collection of common rules for all these connectives, is finitely based. For possible applications see Sect. 0.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Modal Logics That Are Both Monotone and Antitone: Makinson’s Extension Results and Affinities between Logics.Lloyd Humberstone & Steven T. Kuhn - 2022 - Notre Dame Journal of Formal Logic 63 (4):515-550.
    A notable early result of David Makinson establishes that every monotone modal logic can be extended to LI, LV, or LF, and every antitone logic can be extended to LN, LV, or LF, where LI, LN, LV, and LF are logics axiomatized, respectively, by the schemas □α↔α, □α↔¬α, □α↔⊤, and □α↔⊥. We investigate logics that are both monotone and antitone (hereafter amphitone). There are exactly three: LV, LF, and the minimum amphitone logic AM axiomatized by the schema □α→□β. These logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Axiomatizing non-deterministic many-valued generalized consequence relations.Sérgio Marcelino & Carlos Caleiro - 2019 - Synthese 198 (S22):5373-5390.
    We discuss the axiomatization of generalized consequence relations determined by non-deterministic matrices. We show that, under reasonable expressiveness requirements, simple axiomatizations can always be obtained, using inference rules which can have more than one conclusion. Further, when the non-deterministic matrices are finite we obtain finite axiomatizations with a suitable generalized subformula property.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On reduced matrices.Wolfgang Rautenberg - 1993 - Studia Logica 52 (1):63 - 72.
    It is shown that the class of reduced matrices of a logic is a 1 st order -class provided the variety associated with has the finite replacement property in the sense of [7]. This applies in particular to all 2-valued logics. For 3-valued logics the class of reduced matrices need not be 1 st order.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Singulary extensional connectives: A closer look. [REVIEW]I. L. Humberstone - 1997 - Journal of Philosophical Logic 26 (3):341-356.
    The totality of extensional 1-ary connectives distinguishable in a logical framework allowing sequents with multiple or empty (alongside singleton) succedents form a lattice under a natural partial ordering relating one connective to another if all the inferential properties of the former are possessed by the latter. Here we give a complete description of that lattice; its Hasse diagram appears as Figure 1 in §2. Simple syntactic descriptions of the lattice elements are provided in §3; §§4 and 5 give some additional (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Concerning axiomatizability of the quasivariety generated by a finite Heyting or topological Boolean algebra.Wles?aw Dziobiak - 1982 - Studia Logica 41 (4):415 - 428.
    In classes of algebras such as lattices, groups, and rings, there are finite algebras which individually generate quasivarieties which are not finitely axiomatizable (see [2], [3], [8]). We show here that this kind of algebras also exist in Heyting algebras as well as in topological Boolean algebras. Moreover, we show that the lattice join of two finitely axiomatizable quasivarieties, each generated by a finite Heyting or topological Boolean algebra, respectively, need not be finitely axiomatizable. Finally, we solve problem 4 asked (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Key notions of Tarski's methodology of deductive systems.Janusz Czelakowski & Grzegorz Malinowski - 1985 - Studia Logica 44 (4):321 - 351.
    The aim of the article is to outline the historical background and the present state of the methodology of deductive systems invented by Alfred Tarski in the thirties. Key notions of Tarski's methodology are presented and discussed through, the recent development of the original concepts and ideas.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Finite replacement and finite hilbert‐style axiomatizability.B. Herrmann & W. Rautenberg - 1992 - Mathematical Logic Quarterly 38 (1):327-344.
    We define a property for varieties V, the f.r.p. . If it applies to a finitely based V then V is strongly finitely based in the sense of [14], see Theorem 2. Moreover, we obtain finite axiomatizability results for certain propositional logics associated with V, in its generality comparable to well-known finite base results from equational logic. Theorem 3 states that each variety generated by a 2-element algebra has the f.r.p. Essentially this implies finite axiomatizability of a 2-valued logic in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • European Summer Meeting of the Association for Symbolic Logic.E. -J. Thiele - 1992 - Journal of Symbolic Logic 57 (1):282-351.
    Download  
     
    Export citation  
     
    Bookmark  
  • Three-element nonfinitely axiomatizable matrices.Katarzyna Pałasińska - 1994 - Studia Logica 53 (3):361 - 372.
    There are exactly two nonfinitely axiomatizable algebraic matrices with one binary connective o such thatx(yz) is a tautology of . This answers a question asked by W. Rautenberg in [2], P. Wojtylak in [8] and W. Dziobiak in [1]. Since every 2-element matrix can be finitely axiomatized ([3]), the matrices presented here are of the smallest possible size and in some sense are the simplest possible.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Investigations into a left-structural right-substructural sequent calculus.Lloyd Humberstone - 2007 - Journal of Logic, Language and Information 16 (2):141-171.
    We study a multiple-succedent sequent calculus with both of the structural rules Left Weakening and Left Contraction but neither of their counterparts on the right, for possible application to the treatment of multiplicative disjunction against the background of intuitionistic logic. We find that, as Hirokawa dramatically showed in a 1996 paper with respect to the rules for implication, the rules for this connective render derivable some new structural rules, even though, unlike the rules for implication, these rules are what we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The logic of algebraic rules as a generalization of equational logic.Tomasz Furmanowski - 1983 - Studia Logica 42 (2-3):251 - 257.
    In this paper we start an investigation of a logic called the logic of algebraic rules. The relation of derivability of this logic is defined on universal closures of special disjunctions of equations extending the relation of derivability of the usual equational logic. The paper contains some simple theorems and examples given in justification for the introduction of our logic. A number of open questions is posed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logics of Order and Related Notions.Janusz Czelakowski & Adam Olszewski - 2022 - Studia Logica 110 (6):1417-1464.
    The aim of the paper is twofold. First, we want to recapture the genesis of the logics of order. The origin of this notion is traced back to the work of Jerzy Kotas, Roman Suszko, Richard Routley and Robert K. Meyer. A further development of the theory of logics of order is presented in the papers of Jacek K. Kabziński. Quite contemporarily, this notion gained in significance in the papers of Carles Noguera and Petr Cintula. Logics of order are named (...)
    Download  
     
    Export citation  
     
    Bookmark