Switch to: References

Citations of:

Hilbert

Philosophy of Science 39 (1):106-108 (1972)

Add citations

You must login to add citations.
  1. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Peano's axioms in their historical context.Michael Segre - 1994 - Archive for History of Exact Sciences 48 (3-4):201-342.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on finitism, constructivity and Hilbert's program.Solomon Feferman - 2008 - Dialectica 62 (2):179-203.
    This is a survey of Gödel's perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert's program, using his published and unpublished articles and lectures as well as the correspondence between Bernays and Gödel on these matters. There is also an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Zionist Internationalism through Number Theory: Edmund Landau at the Opening of the Hebrew University in 1925.Leo Corry & Norbert Schappacher - 2010 - Science in Context 23 (4):427-471.
    ArgumentThis article gives the background to a public lecture delivered in Hebrew by Edmund Landau at the opening ceremony of the Hebrew University in Jerusalem in 1925. On the surface, the lecture appears to be a slightly awkward attempt by a distinguished German-Jewish mathematician to popularize a few number-theoretical tidbits. However, quite unexpectedly, what emerges here is Landau's personal blend of Zionism, German nationalism, and the proud ethos of pure, rigorous mathematics – against the backdrop of the situation of Germany (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The pragmatism of Hilbert's programme.Volker Peckhaus - 2003 - Synthese 137 (1-2):141 - 156.
    It is shown that David Hilbert's formalistic approach to axiomaticis accompanied by a certain pragmatism that is compatible with aphilosophical, or, so to say, external foundation of mathematics.Hilbert's foundational programme can thus be seen as areconciliation of Pragmatism and Apriorism. This interpretation iselaborated by discussing two recent positions in the philosophy ofmathematics which are or can be related to Hilbert's axiomaticalprogramme and his formalism. In a first step it is argued that thepragmatism of Hilbert's axiomatic contradicts the opinion thatHilbert style (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic systems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • David Hilbert and the axiomatization of physics (1894–1905).Leo Corry - 1997 - Archive for History of Exact Sciences 51 (2):83-198.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Egg-Forms and Measure-Bodies: Different Mathematical Practices in the Early History of the Modern Theory of Convexity.Tinne Hoff Kjeldsen - 2009 - Science in Context 22 (1):85-113.
    ArgumentTwo simultaneous episodes in late nineteenth-century mathematical research, one by Karl Hermann Brunn and another by Hermann Minkowski, have been described as the origin of the theory of convex bodies. This article aims to understand and explain how and why the concept of such bodies emerged in these two trajectories of mathematical research; and why Minkowski's – and not Brunn's – strand of thought led to the development of a theory of convexity. Concrete pieces of Brunn's and Minkowski's mathematical work (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The last mathematician from Hilbert's göttingen: Saunders Mac Lane as philosopher of mathematics.Colin McLarty - 2007 - British Journal for the Philosophy of Science 58 (1):77-112.
    While Saunders Mac Lane studied for his D.Phil in Göttingen, he heard David Hilbert's weekly lectures on philosophy, talked philosophy with Hermann Weyl, and studied it with Moritz Geiger. Their philosophies and Emmy Noether's algebra all influenced his conception of category theory, which has become the working structure theory of mathematics. His practice has constantly affirmed that a proper large-scale organization for mathematics is the most efficient path to valuable specific results—while he sees that the question of which results are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • What is truth?Arhat Singh Virdi - unknown
    I defend the correspondence theory of truth, according to which a statement’s truth consists in a relation of correspondence with extralinguistic fact. There are well-known objections to this view, which I consider and rebut, and also important rival accounts, principal among which are so-called deflationist theories and epistemic theories. Epistemic theories relate the concept of truth to our state of knowledge, but fail, I argue, to respect the crucial distinction between a criterion of truth and the meaning of truth: the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Historical development of the foundations of mathematics: Course description.Robert L. Brabenec - 1994 - Science & Education 3 (3):295-309.
    Download  
     
    Export citation  
     
    Bookmark  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Hilberts Logik. Von der Axiomatik zur Beweistheorie.Volker Peckhaus - 1995 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 3 (1):65-86.
    This paper gives a survey of David Hilbert's (1862–1943) changing attitudes towards logic. The logical theory of the Göttingen mathematician is presented as intimately linked to his studies on the foundation of mathematics. Hilbert developed his logical theory in three stages: (1) in his early axiomatic programme until 1903 Hilbert proposed to use the traditional theory of logical inferences to prove the consistency of his set of axioms for arithmetic. (2) After the publication of the logical and set-theoretical paradoxes by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mind, Mathematics and the I gnorabimusstreit.Neil Tennant - 2007 - British Journal for the History of Philosophy 15 (4):745 – 773.
    1Certain developments in recent philosophy of mind that contemporary philosophers would regard as both novel and important were fully anticipated by writers in (or reacting to) the tradition of Nat...
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • ‘Metamathematics’ in Transition.Matthias Wille - 2011 - History and Philosophy of Logic 32 (4):333 - 358.
    In this paper, we trace the conceptual history of the term ?metamathematics? in the nineteenth century. It is well known that Hilbert introduced the term for his proof-theoretic enterprise in about 1922. But he was verifiably inspired by an earlier usage of the phrase in the 1870s. After outlining Hilbert's understanding of the term, we will explore the lines of inducement and elucidate the different meanings of ?metamathematics? in the final decades of the nineteenth century. Finally, we will investigate the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Semiotic analysis of symbolic logic using tagmemic theory: with implications for analytic philosophy.Vern S. Poythress - 2021 - Semiotica 2021 (243):171-186.
    This article uses tagmemic theory as a semiotic framework to analyze symbolic logic. It attends particularly to the issue of context for meaning and the role of personal observer/participants. It focuses on formal languages, which employ no ordinary words and from one point of view have “no meaning.” Attention to the context and the theorists who deploy these languages shows that formal languages have meanings at a higher level, colored by the purposes of the analysts. In fact, there is an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Book Reviews. [REVIEW]Victor Rodych - 1995 - Philosophia Mathematica 3 (3):271-288.
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Axiomatics as ‘Symbolic Form’?Rossella Lupacchini - 2014 - Perspectives on Science 22 (1):1-34.
    Both Hilbert's axiomatics and Cassirer's philosophy of symbolic forms have their roots in Leibniz's idea of a 'universal characteristic,' and grow on Hertz's 'principles of mechanics,' and Dedekind's 'foundations of arithmetic'. As Cassirer recalls in the introduction to his Philosophy of Symbolic Forms, it was the discovery of the analysis of infinity that led Leibniz to focus on "the universal problem inherent in the function of symbolism, and to raise his 'universal characteristic' to a truly philosophical plane." In Leibniz's view, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations for analysis and proof theory.Wilfried Sieg - 1984 - Synthese 60 (2):159 - 200.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Searches for the origins of the epistemological concept of model in mathematics.Gert Schubring - 2017 - Archive for History of Exact Sciences 71 (3):245-278.
    When did the concept of model begin to be used in mathematics? This question appears at first somewhat surprising since “model” is such a standard term now in the discourse on mathematics and “modelling” such a standard activity that it seems to be well established since long. The paper shows that the term— in the intended epistemological meaning—emerged rather recently and tries to reveal in which mathematical contexts it became established. The paper discusses various layers of argumentations and reflections in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Problems and riddles: Hilbert and the du Bois-reymonds.D. C. Mc Carty - 2005 - Synthese 147 (1):63-79.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations