Switch to: References

Citations of:

Instrumental Biology, or the Disunity of Science

Chicago: University of Chicago Press (1994)

Add citations

You must login to add citations.
  1. The Nature of Appearance in Kant’s Transcendentalism: A Seman- tico-Cognitive Analysis.Sergey L. Katrechko - 2018 - Kantian Journal 37 (3):41-55.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Probability.Branden Fitelson, Alan Hajek & Ned Hall - 2005 - In Sahotra Sarkar & Jessica Pfeifer (eds.), The Philosophy of Science: An Encyclopedia. New York: Routledge.
    There are two central questions concerning probability. First, what are its formal features? That is a mathematical question, to which there is a standard, widely (though not universally) agreed upon answer. This answer is reviewed in the next section. Second, what sorts of things are probabilities---what, that is, is the subject matter of probability theory? This is a philosophical question, and while the mathematical theory of probability certainly bears on it, the answer must come from elsewhere. To see why, observe (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Die Architektur der Synthese. Entstehung und Philosophie der modernen Evolutionstheorie.Marcel Weber - 1996 - Dissertation, University of Konstanz
    This Ph.D. thesis provides a pilosophical account of the structure of the evolutionary synthesis of the 1930s and 40s. The first, more historical part analyses how classical genetics came to be integrated into evolutionary thinking, highlighting in particular the importance of chromosomal mapping of Drosophila strains collected in the wild by Dobzansky, but also the work of Goldschmidt, Sumners, Timofeeff-Ressovsky and others. The second, more philosophical part attempts to answer the question wherein the unity of the synthesis consisted. I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Current Status of the Philosophy of Biology.Peter Takacs & Michael Ruse - 2013 - Science & Education 22 (1):5-48.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Evolution of Complexity.Mark Bedau - 2009 - In Barberousse Anouk, Morange M. & Pradeau T. (eds.), Mapping the Future of Biology. Boston Studies in the Philosophy of Science, vol 266. Springer.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Popper’s Shifting Appraisal of Evolutionary Theory.Elliott Sober & Mehmet Elgin - 2017 - Hopos: The Journal of the International Society for the History of Philosophy of Science 7 (1):31-55.
    Karl Popper argued in 1974 that evolutionary theory contains no testable laws and is therefore a metaphysical research program. Four years later, he said that he had changed his mind. Here we seek to understand Popper’s initial position and his subsequent retraction. We argue, contrary to Popper’s own assessment, that he did not change his mind at all about the substance of his original claim. We also explore how Popper’s views have ramifications for contemporary discussion of the nature of laws (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Whence Philosophy of Biology?Jason M. Byron - 2007 - British Journal for the Philosophy of Science 58 (3):409-422.
    A consensus exists among contemporary philosophers of biology about the history of their field. According to the received view, mainstream philosophy of science in the 1930s, 40s, and 50s focused on physics and general epistemology, neglecting analyses of the 'special sciences', including biology. The subdiscipline of philosophy of biology emerged (and could only have emerged) after the decline of logical positivism in the 1960s and 70s. In this article, I present bibliometric data from four major philosophy of science journals (Erkenntnis, (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • What determines biological fitness? The problem of the reference environment.Marshall Abrams - 2009 - Synthese 166 (1):21-40.
    Organisms' environments are thought to play a fundamental role in determining their fitness and hence in natural selection. Existing intuitive conceptions of environment are sufficient for biological practice. I argue, however, that attempts to produce a general characterization of fitness and natural selection are incomplete without the help of general conceptions of what conditions are included in the environment. Thus there is a "problem of the reference environment"—more particularly, problems of specifying principles which pick out those environmental conditions which determine (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Laplaceanism defended.Peter Gildenhuys - 2016 - Biology and Philosophy 31 (3):395-408.
    This work is a critical consideration of several arguments recently given by Elliott Sober that are aimed at undermining the Laplacean stance on probability in evolutionary theory. The Laplacean contends that the only objective probability an event has is the one assigned to it by a complete description of the relevant microparticles. Sober alleges a formal demonstration that the Laplacean stance on probability in evolutionary theory is inconsistent. But Sober’s argument contains a crucial lacuna, one that likely cannot be repaired (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Ontic Account of Scientific Explanation.Carl F. Craver - 2014 - In Marie I. Kaiser, Oliver R. Scholz, Daniel Plenge & Andreas Hüttemann (eds.), Explanation in the special science: The case of biology and history. Dordrecht: Springer. pp. 27-52.
    According to one large family of views, scientific explanations explain a phenomenon (such as an event or a regularity) by subsuming it under a general representation, model, prototype, or schema (see Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441; Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press; Darden (2006); Hempel, C. G. (1965). Aspects of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • The Mystery of the Triceratops’s Mother: How to be a Realist About the Species Category.Adrian Mitchell Currie - 2016 - Erkenntnis 81 (4):795-816.
    Can we be realists about a general category but pluralists about concepts relating to that category? I argue that paleobiological methods of delineating species are not affected by differing species concepts, and that this underwrites an argument that species concept pluralists should be species category realists. First, the criteria by which paleobiologists delineate species are ‘indifferent’ to the species category. That is, their method for identifying species applies equally to any species concept. To identify a new species, paleobiologists show that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Probability, Indeterminism and Biological Processes.Charlotte Werndl - 2012 - In Dennis Dieks, Wenceslao J. Gonzalez, Stephan Hartmann, Michael Stöltzner & Marcel Weber (eds.), Probabilities, Laws, and Structures. Berlin: Springer. pp. 263-277.
    Probability and indeterminism have always been core philosophical themes. This paper aims to contribute to understanding probability and indeterminism in biology. To provide the background for the paper, it will first be argued that an omniscient being would not need the probabilities of evolutionary theory to make predictions about biological processes. However, despite this, one can still be a realist about evolutionary theory, and then the probabilities in evolutionary theory refer to real features of the world. This prompts the question (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Meta-Explanatory Question.L. R. Franklin-Hall - manuscript
    Philosophical theories of explanation characterize the difference between correct and incorrect explanations. While remaining neutral as to which of these ‘first-order’ theories is right, this paper asks the ‘meta-explanatory’ question: is the difference between correct and incorrect explanation real, i.e., objective or mind-independent? After offering a framework for distinguishing realist from anti-realist views, I sketch three distinct paths to explanatory anti-realism.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mechanistic Information as Evidence in Decision-Oriented Science.José Luis Luján, Oliver Todt & Juan Bautista Bengoetxea - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 47 (2):293-306.
    Mechanistic information is used in the field of risk assessment in order to clarify two controversial methodological issues, the selection of inference guides and the definition of standards of evidence. In this paper we present an analysis of the concept of mechanistic information in risk assessment by recurring to previous philosophical analyses of mechanistic explanation. Our conclusion is that the conceptual analysis of mechanistic explanation facilitates a better characterization of the concept of mechanistic information. However, it also shows that the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Ontic Account of Explanatory Reduction in Biology.Marie I. Kaiser - 2012 - Köln: Kölner Hochschulschriften.
    Convincing disputes about explanatory reductionism in the philosophy of biology require a clear and precise understanding of what a reductive explanation in biology is. The central aim of this book is to provide such an account by revealing the features that determine the reductive character of a biological explanation. Chapters I-IV provide the ground, on which I can then, in Chapter V, develop my own account of explanatory reduction in biology: Chapter I reveals the meta-philosophical assumptions that underlie my analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inscrutability and the Opacity of Natural Selection and Random Genetic Drift: Distinguishing the Epistemic and Metaphysical Aspects.Philippe Huneman - 2015 - Erkenntnis 80 (S3):491-518.
    ‘Statisticalists’ argue that the individual interactions of organisms taken together constitute natural selection. On this view, natural selection is an aggregated effect of interactions rather than some added cause acting on populations. The statisticalists’ view entails that natural selection and drift are indistinguishable aggregated effects of interactions, so that it becomes impossible to make a difference between them. The present paper attempts to make sense of the difference between selection and drift, given the main insights of statisticalism; basically, it will (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • La teoría de la selección darwiniana y la genética de poblaciones.Santiago Ginnobili - 2010 - Endoxa 24:169-184.
    Para algunos la selección natural se identifica con las diferencias de éxito de distintos organismos en la reproducción diferencial. Si esto fuese así, el principio de Hardy-Weinberg, por permitir determinar con bastante precisión bajo ciertos supuestos que la frecuencia génica en una población no es la esperada, podría ser visto como una versión cuantitativa de la selección natural cualitativa propuesta por Darwin. Es mi intención mostrar, a través del análisis de explicaciones dadas por Darwin, que la selección natural es más (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Review of Toby Handfield, A Philosophical Guide to Chance. [REVIEW]Christopher J. G. Meacham - 2013 - Notre Dame Philosophical Reviews 2013.
    This is a review of Toby Handfield's book, "A Philosophical Guide to Chance", that discusses Handfield's Debunking Argument against realist accounts of chance.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconstrucción estructuralista de la teoría de la selección natural.Santiago Ginnobili - 2012 - Agora 31 (2):143-169.
    Aunque parece una teoría relativamente simple, la teoría de la selección natural ha traído muchas discusiones al respecto de su reconstrucción. En particular, los autores han tenido dificultades a la hora de elucidar el concepto de aptitud (fitness) adecuadamente. El punto de vista de este trabajo consiste en que para entender adecuadamente esta cuestión, y además, para dar cuenta de manera adecuada de las explicaciones seleccionistas, tanto las dadas por Darwin como sus aplicaciones más actuales, es necesario a la hora (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Rethinking Woodger’s Legacy in the Philosophy of Biology.Daniel J. Nicholson & Richard Gawne - 2014 - Journal of the History of Biology 47 (2):243-292.
    The writings of Joseph Henry Woodger (1894–1981) are often taken to exemplify everything that was wrongheaded, misguided, and just plain wrong with early twentieth-century philosophy of biology. Over the years, commentators have said of Woodger: (a) that he was a fervent logical empiricist who tried to impose the explanatory gold standards of physics onto biology, (b) that his philosophical work was completely disconnected from biological science, (c) that he possessed no scientific or philosophical credentials, and (d) that his work was (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The Social Psychology of “Pseudoscience”: A Brief History.Arthur Still & Windy Dryden - 2004 - Journal for the Theory of Social Behaviour 34 (3):265-290.
    The word ‘pseudoscience’ is a marker of changing worries about science and being a scientist. It played an important role in the philosophical debate on demarcating science from other activities, and was used in popular writings to distance science from cranky theories with scientific pretensions. These uses consolidated a comforting unity in science, a communal space from which pseudoscience is excluded, and the user's right to belong is asserted. The urgency of this process dwindled when attempts to find a formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Is a General Theory of Life Possible? Seeking the Nature of Life in the Context of a Single Example.Carol E. Cleland - 2013 - Biological Theory 7 (4):368-379.
    Is one of the roles of theory in biology answering the question “What is life?” This is true of theory in many other fields of science. So why should not it be the case for biology? Yet efforts to identify unifying concepts and principles of life have been disappointing, leading some (pluralists) to conclude that life is not a natural kind. In this essay I argue that such judgments are premature. Life as we know it on Earth today represents a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Environmental Ethics.Roberta L. Millstein - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer.
    A number of areas of biology raise questions about what is of value in the natural environment and how we ought to behave towards it: conservation biology, environmental science, and ecology, to name a few. Based on my experience teaching students from these and similar majors, I argue that the field of environmental ethics has much to teach these students. They come to me with pent-up questions and a feeling that more is needed to fully engage in their subjects, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Essence and natural kinds: When science meets preschooler intuition.Sarah-Jane Leslie - 2013 - Oxford Studies in Epistemology 4:108-66.
    The present paper focuses on essentialism about natural kinds as a case study in order to illustrate this more general point. Saul Kripke and Hilary Putnam famously argued that natural kinds have essences, which are discovered by science, and which determine the extensions of our natural kind terms and concepts. This line of thought has been enormously influential in philosophy, and is often taken to have been established beyond doubt. The argument for the conclusion, however, makes critical use of intuitions, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Who Got What Wrong? Fodor and Piattelli on Darwin: Guiding Principles and Explanatory Models in Natural Selection.José Díez & Pablo Lorenzano - 2013 - Erkenntnis 78 (5):1143-1175.
    The purpose of this paper is to defend, contra Fodor and Piattelli-Palmarini (F&PP), that the theory of natural selection (NS) is a perfectly bona fide empirical unified explanatory theory. F&PP claim there is nothing non-truistic, counterfactual-supporting, of an “adaptive” character and common to different explanations of trait evolution. In his debate with Fodor, and in other works, Sober defends NS but claims that, compared with classical mechanics (CM) and other standard theories, NS is peculiar in that its explanatory models are (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Driftability.Grant Ramsey - 2013 - Synthese 190 (17):3909-3928.
    In this paper, I argue (contra some recent philosophical work) that an objective distinction between natural selection and drift can be drawn. I draw this distinction by conceiving of drift, in the most fundamental sense, as an individual-level phenomenon. This goes against some other attempts to distinguish selection from drift, which have argued either that drift is a population-level process or that it is a population-level product. Instead of identifying drift with population-level features, the account introduced here can explain these (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Objective and Subjective Probability in Gene Expression.Joel D. Velasco - 2012 - Progress in Biophysics and Molecular Biology 110:5-10.
    In this paper I address the question of whether the probabilities that appear in models of stochastic gene expression are objective or subjective. I argue that while our best models of the phenomena in question are stochastic models, this fact should not lead us to automatically assume that the processes are inherently stochastic. After distinguishing between models and reality, I give a brief introduction to the philosophical problem of the interpretation of probability statements. I argue that the objective vs. subjective (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Selection without replicators: the origin of genes, and the replicator/interactor distinction in etiobiology.John S. Wilkins, Ian Musgrave & Clem Stanyon - 2012 - Biology and Philosophy 27 (2):215-239.
    Genes are thought to have evolved from long-lived and multiply-interactive molecules in the early stages of the origins of life. However, at that stage there were no replicators, and the distinction between interactors and replicators did not yet apply. Nevertheless, the process of evolution that proceeded from initial autocatalytic hypercycles to full organisms was a Darwinian process of selection of favourable variants. We distinguish therefore between Neo-Darwinian evolution and the related Weismannian and Central Dogma divisions, on the one hand, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Explanation in Biology: Reduction, Pluralism, and Explanatory Aims.Ingo Brigandt - 2011 - Science & Education 22 (1):69-91.
    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and causal-mechanistic), a joint study of discovery and explanation, and an abandonment of models of theory reduction in favor of accounts of explanatory reduction. Of particular current interest are philosophical accounts of complex explanations that appeal (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • A Neurathian Conception of the Unity of Science.Angela Potochnik - 2011 - Erkenntnis 74 (3):305-319.
    An historically important conception of the unity of science is explanatory reductionism, according to which the unity of science is achieved by explaining all laws of science in terms of their connection to microphysical law. There is, however, a separate tradition that advocates the unity of science. According to that tradition, the unity of science consists of the coordination of diverse fields of science, none of which is taken to have privileged epistemic status. This alternate conception has roots in Otto (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Natural selection, causality, and laws: What Fodor and piatelli-palmarini got wrong.Elliott Sober - 2010 - Philosophy of Science 77 (4):594-607.
    In their book What Darwin Got Wrong, Jerry Fodor and Massimo Piattelli-Palmarini construct an a priori philosophical argument and an empirical biological argument. The biological argument aims to show that natural selection is much less important in the evolutionary process than many biologists maintain. The a priori argument begins with the claim that there cannot be selection for one but not the other of two traits that are perfectly correlated in a population; it concludes that there cannot be an evolutionary (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Drift: A historical and conceptual overview.Anya Plutynski - 2007 - Biological Theory 2 (2):156-167.
    There are several different ways in which chance affects evolutionary change. That all of these processes are called “random genetic drift” is in part a due to common elements across these different processes, but is also a product of historical borrowing of models and language across different levels of organization in the biological hierarchy. A history of the concept of drift will reveal the variety of contexts in which drift has played an explanatory role in biology, and will shed light (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Deterministic Probability: Neither chance nor credence.Aidan Lyon - 2011 - Synthese 182 (3):413-432.
    Some have argued that chance and determinism are compatible in order to account for the objectivity of probabilities in theories that are compatible with determinism, like Classical Statistical Mechanics (CSM) and Evolutionary Theory (ET). Contrarily, some have argued that chance and determinism are incompatible, and so such probabilities are subjective. In this paper, I argue that both of these positions are unsatisfactory. I argue that the probabilities of theories like CSM and ET are not chances, but also that they are (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Levels of explanation reconceived.Angela Potochnik - 2010 - Philosophy of Science 77 (1):59-72.
    A common argument against explanatory reductionism is that higher‐level explanations are sometimes or always preferable because they are more general than reductive explanations. Here I challenge two basic assumptions that are needed for that argument to succeed. It cannot be assumed that higher‐level explanations are more general than their lower‐level alternatives or that higher‐level explanations are general in the right way to be explanatory. I suggest a novel form of pluralism regarding levels of explanation, according to which explanations at different (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology.Ingo Brigandt - 2010 - Erkenntnis 73 (3):295-311.
    The paper works towards an account of explanatory integration in biology, using as a case study explanations of the evolutionary origin of novelties-a problem requiring the integration of several biological fields and approaches. In contrast to the idea that fields studying lower level phenomena are always more fundamental in explanations, I argue that the particular combination of disciplines and theoretical approaches needed to address a complex biological problem and which among them is explanatorily more fundamental varies with the problem pursued. (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • The adaptive landscape of science.John S. Wilkins - 2008 - Biology and Philosophy 23 (5):659-671.
    In 1988, David Hull presented an evolutionary account of science. This was a direct analogy to evolutionary accounts of biological adaptation, and part of a generalized view of Darwinian selection accounts that he based upon the Universal Darwinism of Richard Dawkins. Criticisms of this view were made by, among others, Kim Sterelny, which led to it gaining only limited acceptance. Some of these criticisms are, I will argue, no longer valid in the light of developments in the formal modeling of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Determinism, realism, and probability in evolutionary theory.Marcel Weber - 2001 - Proceedings of the Philosophy of Science Association 2001 (3):S213-.
    Recent discussion of the statistical character of evolutionary theory has centered around two positions: (1) Determinism combined with the claim that the statistical character is eliminable, a subjective interpretation of probability, and instrumentalism; (2) Indeterminism combined with the claim that the statistical character is ineliminable, a propensity interpretation of probability, and realism. I point out some internal problems in these positions and show that the relationship between determinism, eliminability, realism, and the interpretation of probability is more complex than previously assumed (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Is the evolutionary process deterministic or indeterministic? An argument for agnosticism.Roberta L. Millstein - 2000
    Recently, philosophers of biology have debated the status of the evolutionary process: is it deterministic or indeterministic? I argue that there is insufficient reason to favor one side of the debate over the other, and that a more philosophically defensible position argues neither for the determinacy nor for the indeterminacy of the evolutionary process. In other words, I maintain that the appropriate stand to take towards the question of the determinism of the evolutionary process is agnosticism. I then suggest that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Can there be stochastic evolutionary causes?Patrick Forber & Kenneth Reisman - 2007 - Philosophy of Science 74 (5):616-627.
    Do evolutionary processes such as selection and random drift cause evolutionary change, or are they merely convenient ways of describing or summarizing it? Philosophers have lined up on both sides of this question. One recent defense (Reisman and Forber 2005) of the causal status of selection and drift appeals to a manipulability theory of causation. Yet, even if one accepts manipulability, there are still reasons to doubt that genetic drift, in particular, is genuinely causal. We will address two challenges to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Beyond theoretical reduction and layer-cake antireduction: How DNA retooled genetics and transformed biological practice.C. Kenneth Waters - unknown
    Watson and Crick’s discovery of the structure of DNA led to developments that transformed many biological sciences. But what were the relevant developments and how did they transform biology? Much of the philosophical discussion concerning this question can be organized around two opposing views: theoretical reductionism and layer-cake antireductionism. Theoretical reductionist and their anti-reductionist foes hold two assumptions in common. First, both hold that biological knowledge is structured like a layer cake, with some biological sciences, such as molecular biology cast (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Reductionism redux: Computing the embryo. [REVIEW]Alex Rosenberg - 1997 - Biology and Philosophy 12 (4):445-470.
    This paper argues that the consensus physicalist antireductionism in the philosophy of biology cannot accommodate the research strategy or indeed the recent findings of molecular developmental biology. After describing Wolperts programmatic claims on its behalf, and recent work by Gehring and others to identify the molecular determinants of development, the paper attempts to identify the relationship between evolutionary and developmental biology by reconciling two apparently conflicting accounts of bio-function – Wrights and Nagels (as elaborated by Cummins). Finally, the paper seeks (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • How is biological explanation possible?Alex Rosenberg - 2001 - British Journal for the Philosophy of Science 52 (4):735-760.
    That biology provides explanations is not open to doubt. But how it does so must be a vexed question for those who deny that biology embodies laws or other generalizations with the sort of explanatory force that the philosophy of science recognizes. The most common response to this problem has involved redefining law so that those grammatically general statements which biologists invoke in explanations can be counted as laws. But this terminological innovation cannot identify the source of biology's explanatory power. (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Natural selection as a population-level causal process.Roberta L. Millstein - 2006 - British Journal for the Philosophy of Science 57 (4):627-653.
    Recent discussions in the philosophy of biology have brought into question some fundamental assumptions regarding evolutionary processes, natural selection in particular. Some authors argue that natural selection is nothing but a population-level, statistical consequence of lower-level events (Matthen and Ariew [2002]; Walsh et al. [2002]). On this view, natural selection itself does not involve forces. Other authors reject this purely statistical, population-level account for an individual-level, causal account of natural selection (Bouchard and Rosenberg [2004]). I argue that each of these (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Are random drift and natural selection conceptually distinct?Roberta L. Millstein - 2002 - Biology and Philosophy 17 (1):33-53.
    The latter half of the twentieth century has been marked by debates in evolutionary biology over the relative significance of natural selection and random drift: the so-called “neutralist/selectionist” debates. Yet John Beatty has argued that it is difficult, if not impossible, to distinguish the concept of random drift from the concept of natural selection, a claim that has been accepted by many philosophers of biology. If this claim is correct, then the neutralist/selectionist debates seem at best futile, and at worst, (...)
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • Gould on laws in biological science.Lee Mcintyre - 1997 - Biology and Philosophy 12 (3):357-367.
    Are there laws in evolutionary biology? Stephen J. Gould has argued that there are factors unique to biological theorizing which prevent the formulation of laws in biology, in contradistinction to the case in physics and chemistry. Gould offers the problem of complexity as just such a fundamental barrier to biological laws in general, and to Dollos Law in particular. But I argue that Gould fails to demonstrate: (1) that Dollos Law is not law-like, (2) that the alleged failure of Dollos (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The trials of life: Natural selection and random drift.Denis M. Walsh, Andre Ariew & Tim Lewens - 2002 - Philosophy of Science 69 (3):452-473.
    We distinguish dynamical and statistical interpretations of evolutionary theory. We argue that only the statistical interpretation preserves the presumed relation between natural selection and drift. On these grounds we claim that the dynamical conception of evolutionary theory as a theory of forces is mistaken. Selection and drift are not forces. Nor do selection and drift explanations appeal to the (sub-population-level) causes of population level change. Instead they explain by appeal to the statistical structure of populations. We briefly discuss the implications (...)
    Download  
     
    Export citation  
     
    Bookmark   188 citations  
  • On the neglect of the philosophy of chemistry.J. van Brakel - 1999 - Foundations of Chemistry 1 (2):111-174.
    In this paper I present a historiography of the recent emergence of philosophy of chemistry. Special attention is given to the interest in this domain in Eastern Europe before the collapse of the USSR. It is shown that the initial neglect of the philosophy of chemistry is due to the unanimous view in philosophy and philosophy of science that only physics is a proper science (to put in Kant's words). More recently, due to the common though incorrect assumption that chemistry (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Two outbreaks of lawlessness in recent philosophy of biology.Elliott Sober - 1997 - Philosophy of Science 64 (4):467.
    John Beatty (1995) and Alexander Rosenberg (1994) have argued against the claim that there are laws in biology. Beatty's main reason is that evolution is a process full of contingency, but he also takes the existence of relative significance controversies in biology and the popularity of pluralistic approaches to a variety of evolutionary questions to be evidence for biology's lawlessness. Rosenberg's main argument appeals to the idea that biological properties supervene on large numbers of physical properties, but he also develops (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Monophyly, paraphyly, and natural kinds.Olivier Rieppel - 2005 - Biology and Philosophy 20 (2-3):465-487.
    A long-standing debate has dominated systematic biology and the ontological commitments made by its theories. The debate has contrasted individuals and the part – whole relationship with classes and the membership relation. This essay proposes to conceptualize the hierarchy of higher taxa is terms of a hierarchy of homeostatic property cluster natural kinds (biological species remain largely excluded from the present discussion). The reference of natural kind terms that apply to supraspecific taxa is initially fixed descriptively; the extension of those (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Chance and the patterns of drift: A natural experiment.Robert C. Richardson - 2006 - Philosophy of Science 73 (5):642-654.
    Evolutionary models can explain the dynamics of populations, how genetic, genotypic, or phenotypic frequencies change with time. Models incorporating chance, or drift, predict specific patterns of change. These are illustrated using classic work on blood types by Cavalli-Sforza and his collaborators in the Parma Valley of Italy, in which the theoretically predicted patterns are exhibited in human populations. These data and the models display properties of ensembles of populations. The explanatory problem needs to be understood in terms of how likely (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations