Switch to: References

Add citations

You must login to add citations.
  1. The Hanf number in the strictly stable case.Saharon Shelah - 2020 - Mathematical Logic Quarterly 66 (3):280-294.
    We associate Hanf numbers to triples where T and T1 are theories and p is a type. We show that the Hanf number for the property: “there is a model M1 of which omits p, but is saturated” is larger than the Hanf number of but smaller than the Hanf number of when T is stable with. In fact, surprisingly, we even characterise the Hanf number of when we fix where T is a first order complete (and stable), and demand.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ipotesi del Continuo.Claudio Ternullo - 2017 - Aphex 16.
    L’Ipotesi del Continuo, formulata da Cantor nel 1878, è una delle congetture più note della teoria degli insiemi. Il Problema del Continuo, che ad essa è collegato, fu collocato da Hilbert, nel 1900, fra i principali problemi insoluti della matematica. A seguito della dimostrazione di indipendenza dell’Ipotesi del Continuo dagli assiomi della teoria degli insiemi, lo status attuale del problema è controverso. In anni più recenti, la ricerca di una soluzione del Problema del Continuo è stata anche una delle ragioni (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (2 other versions)Possible values for 2ℵn and 2ℵω.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The proper forcing axiom, Prikry forcing, and the singular cardinals hypothesis.Justin Tatch Moore - 2006 - Annals of Pure and Applied Logic 140 (1):128-132.
    The purpose of this paper is to present some results which suggest that the Singular Cardinals Hypothesis follows from the Proper Forcing Axiom. What will be proved is that a form of simultaneous reflection follows from the Set Mapping Reflection Principle, a consequence of PFA. While the results fall short of showing that MRP implies SCH, it will be shown that MRP implies that if SCH fails first at κ then every stationary subset of reflects. It will also be demonstrated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Wild edge colourings of graphs.Mirna Džamonja, Péter Komjáth & Charles Morgan - 2004 - Journal of Symbolic Logic 69 (1):255 - 264.
    We prove consistent, assuming there is a supercompact cardinal, that there is a singular strong limit cardinal $\mu$ , of cofinality $\omega$ , such that every $\mu^{+}$ -chromatic graph X on $\mu^{+}$ has an edge colouring c of X into $\mu$ colours for which every vertex colouring g of X into at most $\mu$ many colours has a g-colour class on which c takes every value. The paper also contains some generalisations of the above statement in which $\mu^{+}$ is replaced (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Platonistic formalism.L. Horsten - 2001 - Erkenntnis 54 (2):173-194.
    The present paper discusses a proposal which says,roughly and with several qualifications, that thecollection of mathematical truths is identical withthe set of theorems of ZFC. It is argued that thisproposal is not as easily dismissed as outright falseor philosophically incoherent as one might think. Some morals of this are drawn for the concept ofmathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Nonexistence of universal orders in many cardinals.Menachem Kojman & Saharon Shelah - 1992 - Journal of Symbolic Logic 57 (3):875-891.
    Our theme is that not every interesting question in set theory is independent of ZFC. We give an example of a first order theory T with countable D(T) which cannot have a universal model at ℵ1 without CH; we prove in ZFC a covering theorem from the hypothesis of the existence of a universal model for some theory; and we prove--again in ZFC--that for a large class of cardinals there is no universal linear order (e.g. in every regular $\aleph_1 < (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Stationary and closed rainbow subsets.Shimon Garti & Jing Zhang - 2021 - Annals of Pure and Applied Logic 172 (2):102887.
    We study the structural rainbow Ramsey theory at uncountable cardinals. Compared to the usual rainbow Ramsey theory, the variation focuses on finding a rainbow subset that not only is of a certain cardinality but also satisfies certain structural constraints, such as being stationary or closed in its supremum. In the process of dealing with cardinals greater than ω1, we uncover some connections between versions of Chang's Conjectures and instances of rainbow Ramsey partition relations, addressing a question raised in [18].
    Download  
     
    Export citation  
     
    Bookmark  
  • Supplements of bounded permutation groups.Stephen Bigelow - 1998 - Journal of Symbolic Logic 63 (1):89-102.
    Let λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group B λ (Ω), or simply B λ , is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of B λ if B λ G is the full symmetric group on Ω. In [7], Macpherson and Neumann claimed to have classified (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Club Guessing Ideal: Commentary on a Theorem of Gitik and Shelah.Matthew Foreman & Peter Komjath - 2005 - Journal of Mathematical Logic 5 (1):99-147.
    It is shown in this paper that it is consistent (relative to almost huge cardinals) for various club guessing ideals to be saturated.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Guessing more sets.Pierre Matet - 2015 - Annals of Pure and Applied Logic 166 (10):953-990.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (2 other versions)Possible values for 2< sup> and 2.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On guessing generalized clubs at the successors of regulars.Assaf Rinot - 2011 - Annals of Pure and Applied Logic 162 (7):566-577.
    König, Larson and Yoshinobu initiated the study of principles for guessing generalized clubs, and introduced a construction of a higher Souslin tree from the strong guessing principle.Complementary to the author’s work on the validity of diamond and non-saturation at the successor of singulars, we deal here with a successor of regulars. It is established that even the non-strong guessing principle entails non-saturation, and that, assuming the necessary cardinal arithmetic configuration, entails a diamond-type principle which suffices for the construction of a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is Cantor's continuum problem inherently vague?Kai Hauser - 2002 - Philosophia Mathematica 10 (3):257-285.
    I examine various claims to the effect that Cantor's Continuum Hypothesis and other problems of higher set theory are ill-posed questions. The analysis takes into account the viability of the underlying philosophical views and recent mathematical developments.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Superstability from categoricity in abstract elementary classes.Will Boney, Rami Grossberg, Monica M. VanDieren & Sebastien Vasey - 2017 - Annals of Pure and Applied Logic 168 (7):1383-1395.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Characterizing large cardinals in terms of layered posets.Sean Cox & Philipp Lücke - 2017 - Annals of Pure and Applied Logic 168 (5):1112-1131.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Singular cardinals and the pcf theory.Thomas Jech - 1995 - Bulletin of Symbolic Logic 1 (4):408-424.
    §1. Introduction. Among the most remarkable discoveries in set theory in the last quarter century is the rich structure of the arithmetic of singular cardinals, and its deep relationship to large cardinals. The problem of finding a complete set of rules describing the behavior of the continuum function 2ℵα for singular ℵα's, known as the Singular Cardinals Problem, has been attacked by many different techniques, involving forcing, large cardinals, inner models, and various combinatorial methods. The work on the singular cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)Possible values for 2 (aleph n) and 2 (aleph omega).Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-241.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The secret life of μ-clubs.Pierre Matet - 2022 - Annals of Pure and Applied Logic 173 (9):103162.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Mathematics and Set Theory:数学と集合論.Sakaé Fuchino - 2018 - Journal of the Japan Association for Philosophy of Science 46 (1):33-47.
    Download  
     
    Export citation  
     
    Bookmark  
  • Possible values for 2K-and 2K.Moti Gitik & Carmi Merimovich - 1997 - Annals of Pure and Applied Logic 90 (1-3):193-242.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Reflecting pictures in cardinal arithmetic.Andreas Liu - 2006 - Annals of Pure and Applied Logic 140 (1):120-127.
    We use pcf theory to prove results on reflection at singular cardinals.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Eightfold Way.James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot & Dima Sinapova - 2018 - Journal of Symbolic Logic 83 (1):349-371.
    Three central combinatorial properties in set theory are the tree property, the approachability property and stationary reflection. We prove the mutual independence of these properties by showing that any of their eight Boolean combinations can be forced to hold at${\kappa ^{ + + }}$, assuming that$\kappa = {\kappa ^{ < \kappa }}$and there is a weakly compact cardinal aboveκ.If in additionκis supercompact then we can forceκto be${\aleph _\omega }$in the extension. The proofs combine the techniques of adding and then destroying (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weak squares and very good scales.Maxwell Levine - 2018 - Journal of Symbolic Logic 83 (1):1-12.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forking in short and tame abstract elementary classes.Will Boney & Rami Grossberg - 2017 - Annals of Pure and Applied Logic 168 (8):1517-1551.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Good and bad points in scales.Chris Lambie-Hanson - 2014 - Archive for Mathematical Logic 53 (7):749-777.
    We address three questions raised by Cummings and Foreman regarding a model of Gitik and Sharon. We first analyze the PCF-theoretic structure of the Gitik–Sharon model, determining the extent of good and bad scales. We then classify the bad points of the bad scales existing in both the Gitik–Sharon model and other models containing bad scales. Finally, we investigate the ideal of subsets of singular cardinals of countable cofinality carrying good scales.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indiscernible sequences for extenders, and the singular cardinal hypothesis.Moti Gitik & William J. Mitchell - 1996 - Annals of Pure and Applied Logic 82 (3):273-316.
    We prove several results giving lower bounds for the large cardinal strength of a failure of the singular cardinal hypothesis. The main result is the following theorem: Theorem. Suppose κ is a singular strong limit cardinal and 2κ λ where λ is not the successor of a cardinal of cofinality at most κ. If cf > ω then it follows that o λ, and if cf = ωthen either o λ or {α: K o α+n} is confinal in κ for (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Toward categoricity for classes with no maximal models.Saharon Shelah & Andrés Villaveces - 1999 - Annals of Pure and Applied Logic 97 (1-3):1-25.
    We provide here the first steps toward a Classification Theory ofElementary Classes with no maximal models, plus some mild set theoretical assumptions, when the class is categorical in some λ greater than its Löwenheim-Skolem number. We study the degree to which amalgamation may be recovered, the behaviour of non μ-splitting types. Most importantly, the existence of saturated models in a strong enough sense is proved, as a first step toward a complete solution to the o Conjecture for these classes. Further (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Complicated colorings, revisited.Assaf Rinot & Jing Zhang - 2023 - Annals of Pure and Applied Logic 174 (4):103243.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Splitting Number at Regular Cardinals.Omer Ben-Neria & Moti Gitik - 2015 - Journal of Symbolic Logic 80 (4):1348-1360.
    Letκ, λ be regular uncountable cardinals such that λ >κ+is not a successor of a singular cardinal of low cofinality. We construct a generic extension withs(κ) = λ starting from a ground model in whicho(κ) = λ and prove that assuming ¬0¶,s(κ) = λ implies thato(κ) ≥ λ in the core model.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The comparison of various club guessing principles.Tetsuya Ishiu - 2015 - Annals of Pure and Applied Logic 166 (5):583-600.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A combinatorial forcing for coding the universe by a real when there are no sharps.Saharon Shelah & Lee J. Stanley - 1995 - Journal of Symbolic Logic 60 (1):1-35.
    Assuming 0 ♯ does not exist, we present a combinatorial approach to Jensen's method of coding by a real. The forcing uses combinatorial consequences of fine structure (including the Covering Lemma, in various guises), but makes no direct appeal to fine structure itself.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)We prove covering theorems for K, where K is the core model below the sharp for a strong cardinal, and give an application to stationary set reflection.David Asperó, John Krueger & Yasuo Yoshinobu - 2010 - Annals of Pure and Applied Logic 161 (1):94-108.
    We present several forcing posets for adding a non-reflecting stationary subset of Pω1, where λ≥ω2. We prove that PFA is consistent with dense non-reflection in Pω1, which means that every stationary subset of Pω1 contains a stationary subset which does not reflect to any set of size 1. If λ is singular with countable cofinality, then dense non-reflection in Pω1 follows from the existence of squares.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Club guessing sequences and filters.Tetsuya Ishiu - 2005 - Journal of Symbolic Logic 70 (4):1037-1071.
    We investigate club guessing sequences and filters. We prove that assuming V=L, there exists a strong club guessing sequence on μ if and only if μ is not ineffable for every uncountable regular cardinal μ. We also prove that for every uncountable regular cardinal μ, relative to the existence of a Woodin cardinal above μ, it is consistent that every tail club guessing ideal on μ is precipitous.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A model in which every Boolean algebra has many subalgebras.James Cummings & Saharon Shelah - 1995 - Journal of Symbolic Logic 60 (3):992-1004.
    We show that it is consistent with ZFC (relative to large cardinals) that every infinite Boolean algebra B has an irredundant subset A such that 2 |A| = 2 |B| . This implies in particular that B has 2 |B| subalgebras. We also discuss some more general problems about subalgebras and free subsets of an algebra. The result on the number of subalgebras in a Boolean algebra solves a question of Monk from [6]. The paper is intended to be accessible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Colouring and non-productivity of ℵ2-C.C.Saharon Shelah - 1997 - Annals of Pure and Applied Logic 84 (2):153-174.
    We prove that colouring of pairs from 2 with strong properties exists. The easiest to state problem it solves is: there are two topological spaces with cellularity 1 whose product has cellularity 2; equivalently, we can speak of cellularity of Boolean algebras or of Boolean algebras satisfying the 2-c.c. whose product fails the 2-c.c. We also deal more with guessing of clubs.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The tree property at ℵ ω+1.Dima Sinapova - 2012 - Journal of Symbolic Logic 77 (1):279-290.
    We show that given ω many supercompact cardinals, there is a generic extension in which there are no Aronszajn trees at ℵω+1. This is an improvement of the large cardinal assumptions. The previous hypothesis was a huge cardinal and ω many supercompact cardinals above it, in Magidor—Shelah [7].
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Possible PCF algebras.Thomas Jech & Saharon Shelah - 1996 - Journal of Symbolic Logic 61 (1):313-317.
    There exists a family $\{B_\alpha\}_{\alpha of sets of countable ordinals such that: (1) max B α = α, (2) if α ∈ B β then $B_\alpha \subseteq B_\beta$ , (3) if λ ≤ α and λ is a limit ordinal then B α ∩ λ is not in the ideal generated by the $B_\beta, \beta , and by the bounded subsets of λ, (4) there is a partition {A n } ∞ n = 0 of ω 1 such that for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Applications of pcf for mild large cardinals to elementary embeddings.Moti Gitik & Saharon Shelah - 2013 - Annals of Pure and Applied Logic 164 (9):855-865.
    The following pcf results are proved:1. Assume thatκ>ℵ0κ>ℵ0is a weakly compact cardinal. Letμ>2κμ>2κbe a singular cardinal of cofinality κ. Then for every regularView the MathML sourceλ sup{suppcfσ⁎-complete|a⊆Reg∩and|a|<μ}.Turn MathJax onAs an application we show that:if κ is a measurable cardinal andj:V→Mj:V→Mis the elementary embedding by a κ-complete ultrafilter over κ, then for every τ the following holds:1. ifjjis a cardinal thenj=τj=τ;2. |j|=|j)||j|=|j)|;3. for any κ-complete ultrafilter W on κ, |j|=|jW||j|=|jW|.The first two items provide affirmative answers to questions from Gitik and Shelah (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A proof of Shelah's partition theorem.Menachem Kojman - 1995 - Archive for Mathematical Logic 34 (4):263-268.
    A self contained proof of Shelah's theorem is presented: If μ is a strong limit singular cardinal of uncountable cofinality and 2μ > μ+ then $\left( {\begin{array}{*{20}c} {\mu ^ + } \\ \mu \\ \end{array} } \right) \to \left( {\begin{array}{*{20}c} {\mu ^ + } \\ {\mu + 1} \\ \end{array} } \right)_{< cf\mu } $.
    Download  
     
    Export citation  
     
    Bookmark  
  • A model of Cummings and Foreman revisited.Spencer Unger - 2014 - Annals of Pure and Applied Logic 165 (12):1813-1831.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Forcing Closed Unbounded Subsets of אω1+1.M. C. Stanley - 2013 - Journal of Symbolic Logic 78 (3):681-707.
    Download  
     
    Export citation  
     
    Bookmark  
  • On inverse γ-systems and the number of l∞λ- equivalent, non-isomorphic models for λ singular.Saharon Shelah & Pauli Väisänen - 2000 - Journal of Symbolic Logic 65 (1):272 - 284.
    Suppose λ is a singular cardinal of uncountable cofinality κ. For a model M of cardinality λ, let No (M) denote the number of isomorphism types of models N of cardinality λ which are L ∞λ - equivalent to M. In [7] Shelah considered inverse κ- systems A of abelian groups and their certain kind of quotient limits Gr(A)/ Fact(A). In particular Shelah proved in [7, Fact 3.10] that for every cardinal μ there exists an inverse κ-system A such that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Filters, Cohen sets and consistent extensions of the erdös-dushnik-Miller theorem.Saharon Shelah & Lee J. Stanley - 2000 - Journal of Symbolic Logic 65 (1):259-271.
    We present two different types of models where, for certain singular cardinals λ of uncountable cofinality, λ → (λ,ω + 1) 2 , although λ is not a strong limit cardinal. We announce, here, and will present in a subsequent paper, [7], that, for example, consistently, $\aleph_{\omega_1} \nrightarrow (\aleph_{\omega_1}, \omega + 1)^2$ and consistently, 2 $^{\aleph_0} \nrightarrow (2^{\aleph_0},\omega + 1)^2$.
    Download  
     
    Export citation  
     
    Bookmark  
  • More on entangled orders.Ofer Shafir & Saharon Shelah - 2000 - Journal of Symbolic Logic 65 (4):1823-1832.
    This paper grew as a continuation of [Sh462] but in the present form it can serve as a motivation for it as well. We deal with the same notions, all defined in 1.1, and use just one simple lemma from there whose statement and proof we repeat as 2.1. Originally entangledness was introduced, in [BoSh210] for example, in order to get narrow boolean algebras and examples of the nonmultiplicativity of c.c-ness. These applications became marginal when other methods were found and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • When P(λ) (vaguely) resembles κ.Pierre Matet - 2021 - Annals of Pure and Applied Logic 172 (2):102874.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Forcing axioms, supercompact cardinals, singular cardinal combinatorics.Matteo Viale - 2008 - Bulletin of Symbolic Logic 14 (1):99-113.
    The purpose of this communication is to present some recent advances on the consequences that forcing axioms and large cardinals have on the combinatorics of singular cardinals. I will introduce a few examples of problems in singular cardinal combinatorics which can be fruitfully attacked using ideas and techniques coming from the theory of forcing axioms and then translate the results so obtained in suitable large cardinals properties.The first example I will treat is the proof that the proper forcing axiom PFA (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Karp complexity and classes with the independence property.M. C. Laskowski & S. Shelah - 2003 - Annals of Pure and Applied Logic 120 (1-3):263-283.
    A class K of structures is controlled if for all cardinals λ, the relation of L∞,λ-equivalence partitions K into a set of equivalence classes . We prove that no pseudo-elementary class with the independence property is controlled. By contrast, there is a pseudo-elementary class with the strict order property that is controlled 69–88).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Fat sets and saturated ideals.John Krueger - 2003 - Journal of Symbolic Logic 68 (3):837-845.
    We strengthen a theorem of Gitik and Shelah [6] by showing that if κ is either weakly inaccessible or the successor of a singular cardinal and S is a stationary subset of κ such that $NS_{\kappa} \upharpoonright S$ is saturated then $\kappa \S$ is fat. Using this theorem we derive some results about the existence of fat stationary sets. We then strengthen some results due to Baumgartner and Taylor [2], showing in particular that if I is a $\lambda^{+++}-saturated$ normal ideal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Simultaneous stationary reflection and square sequences.Yair Hayut & Chris Lambie-Hanson - 2017 - Journal of Mathematical Logic 17 (2):1750010.
    We investigate the relationship between weak square principles and simultaneous reflection of stationary sets.
    Download  
     
    Export citation  
     
    Bookmark   11 citations