Switch to: References

Add citations

You must login to add citations.
  1. Lowness properties and approximations of the jump.Santiago Figueira, André Nies & Frank Stephan - 2008 - Annals of Pure and Applied Logic 152 (1):51-66.
    We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jump-traceable if for each order function h, for each input e one may effectively enumerate a set Te of possible values for the jump JA, and the number of values enumerated is at most h. A′ (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Almost everywhere domination and superhighness.Stephen G. Simpson - 2007 - Mathematical Logic Quarterly 53 (4):462-482.
    Let ω be the set of natural numbers. For functions f, g: ω → ω, we say f is dominated by g if f < g for all but finitely many n ∈ ω. We consider the standard “fair coin” probability measure on the space 2ω of in-finite sequences of 0's and 1's. A Turing oracle B is said to be almost everywhere dominating if, for measure 1 many X ∈ 2ω, each function which is Turing computable from X is (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Relativized Schnorr tests with universal behavior.Nicholas Rupprecht - 2010 - Archive for Mathematical Logic 49 (5):555-570.
    A Schnorr test relative to some oracle A may informally be called “universal” if it covers all Schnorr tests. Since no true universal Schnorr test exists, such an A cannot be computable. We prove that the sets with this property are exactly those with high Turing degree. Our method is closely related to the proof of Terwijn and Zambella’s characterization of the oracles which are low for Schnorr tests. We also consider the oracles which compute relativized Schnorr tests with the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective Packing Dimension and Traceability.Rod Downey & Keng Meng Ng - 2010 - Notre Dame Journal of Formal Logic 51 (2):279-290.
    We study the Turing degrees which contain a real of effective packing dimension one. Downey and Greenberg showed that a c.e. degree has effective packing dimension one if and only if it is not c.e. traceable. In this paper, we show that this characterization fails in general. We construct a real $A\leq_T\emptyset''$ which is hyperimmune-free and not c.e. traceable such that every real $\alpha\leq_T A$ has effective packing dimension 0. We construct a real $B\leq_T\emptyset'$ which is not c.e. traceable such (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Lowness for Difference Tests.David Diamondstone & Johanna N. Y. Franklin - 2014 - Notre Dame Journal of Formal Logic 55 (1):63-73.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computable analogs of cardinal characteristics: Prediction and rearrangement.Iván Ongay-Valverde & Paul Tveite - 2021 - Annals of Pure and Applied Logic 172 (1):102872.
    There has recently been work by multiple groups in extracting the properties associated with cardinal invariants of the continuum and translating these properties into similar analogous combinatorial properties of computational oracles. Each property yields a highness notion in the Turing degrees. In this paper we study the highness notions that result from the translation of the evasion number and its dual, the prediction number, as well as two versions of the rearrangement number. When translated appropriately, these yield four new highness (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Lowness for isomorphism, countable ideals, and computable traceability.Johanna N. Y. Franklin & Reed Solomon - 2020 - Mathematical Logic Quarterly 66 (1):104-114.
    We show that every countable ideal of degrees that are low for isomorphism is contained in a principal ideal of degrees that are low for isomorphism by adapting an exact pair construction. We further show that within the hyperimmune free degrees, lowness for isomorphism is entirely independent of computable traceability.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Strong Jump-Traceability.Noam Greenberg & Dan Turetsky - 2018 - Bulletin of Symbolic Logic 24 (2):147-164.
    We review the current knowledge concerning strong jump-traceability. We cover the known results relating strong jump-traceability to randomness, and those relating it to degree theory. We also discuss the techniques used in working with strongly jump-traceable sets. We end with a section of open questions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lowness for genericity.Liang Yu - 2006 - Archive for Mathematical Logic 45 (2):233-238.
    We study lowness for genericity. We show that there exists no Turing degree which is low for 1-genericity and all of computably traceable degrees are low for weak 1-genericity.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
    It is time for a new paper about open questions in the currently very active area of randomness and computability. Ambos-Spies and Kučera presented such a paper in 1999 [1]. All the question in it have been solved, except for one: is KL-randomness different from Martin-Löf randomness? This question is discussed in Section 6.Not all the questions are necessarily hard—some simply have not been tried seriously. When we think a question is a major one, and therefore likely to be hard, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Covering the recursive sets.Bjørn Kjos-Hanssen, Frank Stephan & Sebastiaan A. Terwijn - 2017 - Annals of Pure and Applied Logic 168 (4):804-823.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Schnorr and computable randomness, martingales, and machines.Rod Downey, Evan Griffiths & Geoffrey Laforte - 2004 - Mathematical Logic Quarterly 50 (6):613-627.
    We examine the randomness and triviality of reals using notions arising from martingales and prefix-free machines.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Higher kurtz randomness.Bjørn Kjos-Hanssen, André Nies, Frank Stephan & Liang Yu - 2010 - Annals of Pure and Applied Logic 161 (10):1280-1290.
    A real x is -Kurtz random if it is in no closed null set . We show that there is a cone of -Kurtz random hyperdegrees. We characterize lowness for -Kurtz randomness as being -dominated and -semi-traceable.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Randomness and lowness notions via open covers.Laurent Bienvenu & Joseph S. Miller - 2012 - Annals of Pure and Applied Logic 163 (5):506-518.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some Consequences of And.Yinhe Peng, W. U. Liuzhen & Y. U. Liang - 2023 - Journal of Symbolic Logic 88 (4):1573-1589.
    Strong Turing Determinacy, or ${\mathrm {sTD}}$, is the statement that for every set A of reals, if $\forall x\exists y\geq _T x (y\in A)$, then there is a pointed set $P\subseteq A$. We prove the following consequences of Turing Determinacy ( ${\mathrm {TD}}$ ) and ${\mathrm {sTD}}$ over ${\mathrm {ZF}}$ —the Zermelo–Fraenkel axiomatic set theory without the Axiom of Choice: (1) ${\mathrm {ZF}}+{\mathrm {TD}}$ implies $\mathrm {wDC}_{\mathbb {R}}$ —a weaker version of $\mathrm {DC}_{\mathbb {R}}$.(2) ${\mathrm {ZF}}+{\mathrm {sTD}}$ implies that every (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On strongly jump traceable reals.Keng Meng Ng - 2008 - Annals of Pure and Applied Logic 154 (1):51-69.
    In this paper we show that there is no minimal bound for jump traceability. In particular, there is no single order function such that strong jump traceability is equivalent to jump traceability for that order. The uniformity of the proof method allows us to adapt the technique to showing that the index set of the c.e. strongly jump traceables is image-complete.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Natural factors of the Muchnik lattice capturing IPC.Rutger Kuyper - 2013 - Annals of Pure and Applied Logic 164 (10):1025-1036.
    We give natural examples of factors of the Muchnik lattice which capture intuitionistic propositional logic , arising from the concepts of lowness, 1-genericity, hyperimmune-freeness and computable traceability. This provides a purely computational semantics for IPC.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Schnorr trivial reals: a construction. [REVIEW]Johanna N. Y. Franklin - 2008 - Archive for Mathematical Logic 46 (7-8):665-678.
    A real is Martin-Löf (Schnorr) random if it does not belong to any effectively presented null ${\Sigma^0_1}$ (recursive) class of reals. Although these randomness notions are very closely related, the set of Turing degrees containing reals that are K-trivial has very different properties from the set of Turing degrees that are Schnorr trivial. Nies proved in (Adv Math 197(1):274–305, 2005) that all K-trivial reals are low. In this paper, we prove that if ${{\bf h'} \geq_T {\bf 0''}}$ , then h (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Tracing and domination in the Turing degrees.George Barmpalias - 2012 - Annals of Pure and Applied Logic 163 (5):500-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)2009–2010 Winter Meeting of the Association for Symbolic Logic.John Steel - 2010 - Bulletin of Symbolic Logic 16 (3):430-437.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unified characterizations of lowness properties via Kolmogorov complexity.Takayuki Kihara & Kenshi Miyabe - 2015 - Archive for Mathematical Logic 54 (3-4):329-358.
    Consider a randomness notion C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. A uniform test in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a total computable procedure that each oracle X produces a test relative to X in the sense of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}. We say that a binary sequence Y is C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document}-random uniformly relative to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lowness for Kurtz randomness.Noam Greenberg & Joseph S. Miller - 2009 - Journal of Symbolic Logic 74 (2):665-678.
    We prove that degrees that are low for Kurtz randomness cannot be diagonally non-recursive. Together with the work of Stephan and Yu [16], this proves that they coincide with the hyperimmune-free non-DNR degrees, which are also exactly the degrees that are low for weak 1-genericity. We also consider Low(M, Kurtz), the class of degrees a such that every element of M is a-Kurtz random. These are characterised when M is the class of Martin-Löf random, computably random, or Schnorr random reals. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations