Switch to: References

Add citations

You must login to add citations.
  1. Intuition, Iteration, Induction.Mark van Atten - 2024 - Philosophia Mathematica 32 (1):34-81.
    Brouwer’s view on induction has relatively recently been characterised as one on which it is not only intuitive (as expected) but functional, by van Dalen. He claims that Brouwer’s ‘Ur-intuition’ also yields the recursor. Appealing to Husserl’s phenomenology, I offer an analysis of Brouwer’s view that supports this characterisation and claim, even if assigning the primary role to the iterator instead. Contrasts are drawn to accounts of induction by Poincaré, Heyting, and Kreisel. On the phenomenological side, the analysis provides an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • L.E.J. Brouwer's ‘Unreliability of the Logical Principles’: A New Translation, with an Introduction.Mark Van Atten & Göran Sundholm - 2017 - History and Philosophy of Logic 38 (1):24-47.
    We present a new English translation of L.E.J. Brouwer's paper ‘De onbetrouwbaarheid der logische principes’ of 1908, together with a philosophical and historical introduction. In this paper Brouwer for the first time objected to the idea that the Principle of the Excluded Middle is valid. We discuss the circumstances under which the manuscript was submitted and accepted, Brouwer's ideas on the principle of the excluded middle, its consistency and partial validity, and his argument against the possibility of absolutely undecidable propositions. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The relativity and universality of logic.Jean-Yves Beziau - 2015 - Synthese 192 (7):1939-1954.
    After recalling the distinction between logic as reasoning and logic as theory of reasoning, we first examine the question of relativity of logic arguing that the theory of reasoning as any other science is relative. In a second part we discuss the emergence of universal logic as a general theory of logical systems, making comparison with universal algebra and the project of mathesis universalis. In a third part we critically present three lines of research connected to universal logic: logical pluralism, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Conceptions of truth in intuitionism.Panu Raatikainen - 2004 - History and Philosophy of Logic 25 (2):131--45.
    Intuitionism’s disagreement with classical logic is standardly based on its specific understanding of truth. But different intuitionists have actually explicated the notion of truth in fundamentally different ways. These are considered systematically and separately, and evaluated critically. It is argued that each account faces difficult problems. They all either have implausible consequences or are viciously circular.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Anti-realist semantics.Wolfram Hinzen - 2000 - Erkenntnis 52 (3):281-311.
    I argue that the implementation of theDummettian program of an ``anti-realist'' semanticsrequires quite different conceptions of the technicalmeaning-theoretic terms used than those presupposed byDummett. Starting from obvious incoherences in anattempt to conceive truth conditions as assertibilityconditions, I argue that for anti-realist purposesnon-epistemic semantic notions are more usefully kept apart from epistemic ones rather than beingreduced to them. Embedding an anti-realist theory ofmeaning in Martin-Löf's Intuitionistic Type Theory(ITT) takes care, however, of many notorious problemsthat have arisen in trying to specify suitableintuitionistic (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • An embodied theorisation: Arend Heyting's hypothesis about how the self separates from the outer world finds confirmation.Miriam Franchella - 2023 - Theoria 89 (5):660-670.
    At the beginning of the twentieth century, among the foundational schools of mathematics appeared ‘intuitionism’ by Dutchman L. E. J. Brouwer, who based arithmetic on the intuition of time and all mental constructions that could be made out of it. His pupil Arend Heyting was the first populariser of intuitionism, and he repeatedly emphasised that no philosophy was required to practise intuitionism so that such mathematics could be shared by anyone. Still, stimulated by invitations to humanistic conferences, he wrote a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof vs Provability: On Brouwer’s Time Problem.Palle Yourgrau - 2020 - History and Philosophy of Logic 41 (2):140-153.
    Is a mathematical theorem proved because provable, or provable because proved? If Brouwer’s intuitionism is accepted, we’re committed, it seems, to the latter, which is highly problematic. Or so I will argue. This and other consequences of Brouwer’s attempt to found mathematics on the intuition of a move of time have heretofore been insufficiently appreciated. Whereas the mathematical anomalies of intuitionism have received enormous attention, too little time, I’ll try to show, has been devoted to some of the temporal anomalies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Shaping the Enemy: Foundational Labelling by L.E.J. Brouwer and A. Heyting.Miriam Franchella - 2018 - History and Philosophy of Logic 40 (2):152-181.
    The use of the three labels to denote the three foundational schools of the early twentieth century are now part of literature. Yet, neither their number nor the...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematics and computer science.Kazimierz Trzęsicki - 2010 - Studies in Logic, Grammar and Rhetoric 22 (35).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Against Against Intuitionism.Dirk Schlimm - 2005 - Synthese 147 (1):171-188.
    The main ideas behind Brouwer’s philosophy of Intuitionism are presented. Then some critical remarks against Intuitionism made by William Tait in “Against Intuitionism” [Journal of Philosophical Logic, 12, 173–195] are answered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Brouwer and Nietzsche: Views about Life, Views about Logic.Miriam Franchella - 2015 - History and Philosophy of Logic 36 (4):367-391.
    Friedrich Nietzsche and Luitzen Egbertus Jan Brouwer had strong personalities and freely expressed unconventional opinions. In particular, they dared to challenge the traditional view that considered Aristotelian logic as being absolute and intrinsic to man. Although they formed this opinion in different ways and in different contexts, they both based it on a view of life that considered it as a struggle for power in which logic was a weapon. Therefore, it is interesting to carry out an in-depth analysis on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Brouwer's Conception of Truth.Casper Storm Hansen - 2016 - Philosophia Mathematica 24 (3):379-400.
    In this paper it is argued that the understanding of Brouwer as replacing truth conditions with assertability or proof conditions, in particular as codified in the so-called Brouwer-Heyting-Kolmogorov Interpretation, is misleading and conflates a weak and a strong notion of truth that have to be kept apart to understand Brouwer properly: truth-as-anticipation and truth- in-content. These notions are explained, exegetical documentation provided, and semi-formal recursive definitions are given.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • L. E. J. Brouwer and Karl Popper: Two Perspectives on Mathematics.Alexander John Naraniecki - 2015 - Cosmos and History 11 (1):239-255.
    Download  
     
    Export citation  
     
    Bookmark  
  • New Zeno and Actual Infinity.Casper Storm Hansen - 2011 - Open Journal of Philosophy 1 (2):57.
    In 1964 José Benardete invented the “New Zeno Paradox” about an infinity of gods trying to prevent a traveller from reaching his destination. In this paper it is argued, contra Priest and Yablo, that the paradox must be resolved by rejecting the possibility of actual infinity. Further, it is shown that this paradox has the same logical form as Yablo’s Paradox. It is suggested that constructivism can serve as the basis of a common solution to New Zeno and the paradoxes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuition in Mathematics: from Racism to Pluralism.Miriam Franchella - 2022 - Philosophia 50 (3):1055-1091.
    In the nineteenth and twentieth centuries many mathematicians referred to intuition as the indispensable research tool for obtaining new results. In this essay we will analyse a group of mathematicians who interacted with Luitzen Egbertus Jan Brouwer in order to compare their conceptions of intuition. We will see how to the same word “intuition” very different meanings corresponded: they varied from geometrical vision, to a unitary view of a demonstration, to the perception of time, to the faculty of considering concepts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Brouwer versus Hilbert: 1907–1928.J. Posy Carl - 1998 - Science in Context 11 (2):291-325.
    The ArgumentL. E. J. Brouwer and David Hubert, two titans of twentieth-century mathematics, clashed dramatically in the 1920s. Though they were both Kantian constructivists, their notoriousGrundlagenstreitcentered on sharp differences about the foundations of mathematics: Brouwer was prepared to revise the content and methods of mathematics (his “Intuitionism” did just that radically), while Hilbert's Program was designed to preserve and constructively secure all of classical mathematics.Hilbert's interests and polemics at the time led to at least three misconstruals of intuitionism, misconstruals which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A constructivist perspective on physics.Peter Fletcher - 2002 - Philosophia Mathematica 10 (1):26-42.
    This paper examines the problem of extending the programme of mathematical constructivism to applied mathematics. I am not concerned with the question of whether conventional mathematical physics makes essential use of the principle of excluded middle, but rather with the more fundamental question of whether the concept of physical infinity is constructively intelligible. I consider two kinds of physical infinity: a countably infinite constellation of stars and the infinitely divisible space-time continuum. I argue (contrary to Hellman) that these do not. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The first axiomatization of relevant logic.Kosta Došen - 1992 - Journal of Philosophical Logic 21 (4):339 - 356.
    This is a review, with historical and critical comments, of a paper by I. E. Orlov from 1928, which gives the oldest known axiomatization of the implication-negation fragment of the relevant logic R. Orlov's paper also foreshadows the modal translation of systems with an intuitionistic negation into S4-type extensions of systems with a classical, involutive, negation. Orlov introduces the modal postulates of S4 before Becker, Lewis and Gödel. Orlov's work, which seems to be nearly completely ignored, is related to the (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl.Paolo Mancosu & T. A. Ryckman - 2002 - Philosophia Mathematica 10 (2):130-202.
    Recently discovered correspondence from Oskar Becker to Hermann Weyl sheds new light on Weyl's engagement with Husserlian transcendental phenomenology in 1918-1927. Here the last two of these letters, dated July and August, 1926, dealing with issues in the philosophy of mathematics are presented, together with background and a detailed commentary. The letters provide an instructive context for re-assessing the connection between intuitionism and phenomenology in Weyl's foundational thought, and for understanding Weyl's term ‘symbolic construction’ as marking his own considered position (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Logic is not Logic.Jean-Ives Béziau - 2010 - Abstracta 6 (1):73-102.
    In this paper we discuss the difference between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Choice Sequences and the Continuum.Casper Storm Hansen - 2020 - Erkenntnis 87 (2):517-534.
    According to L.E.J. Brouwer, there is room for non-definable real numbers within the intuitionistic ontology of mental constructions. That room is allegedly provided by freely proceeding choice sequences, i.e., sequences created by repeated free choices of elements by a creating subject in a potentially infinite process. Through an analysis of the constitution of choice sequences, this paper argues against Brouwer’s claim.
    Download  
     
    Export citation  
     
    Bookmark  
  • Dummett's objection to the ontological route to intuitionistic logic: a rejoinder.Mark van Atten - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6):725-742.
    ABSTRACT In ‘The philosophical basis of intuitionistic logic’, Michael Dummett discusses two routes towards accepting intuitionistic rather than classical logic in number theory, one meaning-theoretical and the other ontological. He concludes that the former route is open, but the latter is closed. I reconstruct Dummett's argument against the ontological route and argue that it fails. Call a procedure ‘investigative’ if that in virtue of which a true proposition stating its outcome is true exists prior to the execution of that procedure; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Theological Underpinnings of the Modern Philosophy of Mathematics.Vladislav Shaposhnikov - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):147-168.
    The study is focused on the relation between theology and mathematics in the situation of increasing secularization. My main concern in the second part of this paper is the early-twentieth-century foundational crisis of mathematics. The hypothesis that pure mathematics partially fulfilled the functions of theology at that time is tested on the views of the leading figures of the three main foundationalist programs: Russell, Hilbert and Brouwer.
    Download  
     
    Export citation  
     
    Bookmark  
  • The logic of Brouwer and Heyting.Joan Rand Moschovakis - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 77-125.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Constructive mathematics in theory and programming practice.Douglas Bridges & Steeve Reeves - 1999 - Philosophia Mathematica 7 (1):65-104.
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop's constructive mathematics (BISH). it gives a sketch of both Myhill's axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focusses on the relation between constructive mathematics and programming, with emphasis on Martin-L6f 's theory of types as a formal system for BISH.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Brouwer's conception of language, mind and mathematics'.Hiroshi Kaneko - 2002 - Annals of the Japan Association for Philosophy of Science 11 (1):35-49.
    Download  
     
    Export citation  
     
    Bookmark   1 citation