Switch to: References

Add citations

You must login to add citations.
  1. Absorbing the Arrow of Electromagnetic Radiation.Mario Hubert & Charles T. Sebens - 2023 - Studies in History and Philosophy of Science Part A 99 (C):10-27.
    We argue that the asymmetry between diverging and converging electromagnetic waves is just one of many asymmetries in observed phenomena that can be explained by a past hypothesis and statistical postulate (together assigning probabilities to different states of matter and field in the early universe). The arrow of electromagnetic radiation is thus absorbed into a broader account of temporal asymmetries in nature. We give an accessible introduction to the problem of explaining the arrow of radiation and compare our preferred strategy (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The fate of causal structure under time reversal.Porter Williams - 2022 - Theoria. An International Journal for Theory, History and Foundations of Science 37 (1):87-102.
    What happens to the causal structure of a world when time is reversed? At first glance it seems there are two possible answers: the causal relations are reversed, or they are not. I argue that neither of these answers is correct: we should either deny that time-reversed worlds have causal relations at all, or deny that causal concepts developed in the actual world are reliable guides to the causal structure of time-reversed worlds. The first option is motivated by the instability (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Absolute Units.Neil Dewar - 2021 - British Journal for the Philosophy of Science 75 (1):1-30.
    How may we characterize the intrinsic structure of physical quantities such as mass, length, or electric charge? This article shows that group-theoretic methods—specifically, the notion of a free and transitive group action—provide an elegant way of characterizing the structure of scalar quantities, and uses this to give an intrinsic treatment of vector quantities. It also gives a general account of how different scalar or vector quantities may be algebraically combined with one another. Finally, it uses this apparatus to give a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • C‐theories of time: On the adirectionality of time.Matt Farr - 2020 - Philosophy Compass (12):1-17.
    “The universe is expanding, not contracting.” Many statements of this form appear unambiguously true; after all, the discovery of the universe’s expansion is one of the great triumphs of empirical science. However, the statement is time-directed: the universe expands towards what we call the future; it contracts towards the past. If we deny that time has a direction, should we also deny that the universe is really expanding? This article draws together and discusses what I call ‘C-theories’ of time — (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Quantum mechanics, time and ontology.Valia Allori - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):145-154.
    Against what is commonly accepted in many contexts, it has been recently suggested that both deterministic and indeterministic quantum theories are not time‐reversal invariant, and thus time is handed in a quantum world. In this paper, I analyze these arguments and evaluate possible reactions to them. In the context of deterministic theories, first I show that this conclusion depends on the controversial assumption that the wave‐function is a physically real scalar field in configuration space. Then I argue that answers which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Probability in Physics: Stochastic, Statistical, Quantum.David Wallace - 2014 - In Alastair Wilson (ed.), Chance and Temporal Asymmetry. Oxford: Oxford University Press.
    I review the role of probability in contemporary physics and the origin of probabilistic time asymmetry, beginning with the pre-quantum case but concentrating on quantum theory. I argue that quantum mechanics radically changes the pre-quantum situation and that the philosophical nature of objective probability in physics, and of probabilistic asymmetry in time, is dependent on the correct resolution of the quantum measurement problem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Mathematical Representation of the Arrow of Time.Meir Hemmo & Orly Shenker - 2012 - Iyyun 61:167-192.
    This paper distinguishes between 3 meanings of reversal, all of which are mathematically equivalent in classical mechanics: velocity reversal, retrodiction, and time reversal. It then concludes that in order to have well defined velocities a primitive arrow of time must be included in every time slice. The paper briefly mentions that this arrow cannot come from the Second Law of thermodynamics, but this point is developed in more details elsewhere.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Substantivalist and Relationalist Approaches to Spacetime.Oliver Pooley - 2013 - In Robert Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press USA.
    Substantivalists believe that spacetime and its parts are fundamental constituents of reality. Relationalists deny this, claiming that spacetime enjoys only a derivative existence. I begin by describing how the Galilean symmetries of Newtonian physics tell against both Newton's brand of substantivalism and the most obvious relationalist alternative. I then review the obvious substantivalist response to the problem, which is to ditch substantival space for substantival spacetime. The resulting position has many affinities with what are arguably the most natural interpretations of (...)
    Download  
     
    Export citation  
     
    Bookmark   107 citations  
  • On A- and B-theoretic elements of branching spacetimes.Matt Farr - 2012 - Synthese 188 (1):85-116.
    This paper assesses branching spacetime theories in light of metaphysical considerations concerning time. I present the A, B, and C series in terms of the temporal structure they impose on sets of events, and raise problems for two elements of extant branching spacetime theories—McCall’s ‘branch attrition’, and the ‘no backward branching’ feature of Belnap’s ‘branching space-time’—in terms of their respective A- and B-theoretic nature. I argue that McCall’s presentation of branch attrition can only be coherently formulated on a model with (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • A Connection between Minkowski and Galilean Space‐times in Quantum Mechanics.Douglas Kutach - 2010 - International Studies in the Philosophy of Science 24 (1):15 – 29.
    Relativistic quantum theories are equipped with a background Minkowski spacetime and non-relativistic quantum theories with a Galilean space-time. Traditional investigations have distinguished their distinct space-time structures and have examined ways in which relativistic theories become sufficiently like Galilean theories in a low velocity approximation or limit. A different way to look at their relationship is to see that both kinds of theories are special cases of a certain five-dimensional generalization involving no limiting procedures or approximations. When one compares them, striking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time in Thermodynamics.Jill North - 2011 - In Craig Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • The metaphysical underdetermination of time-reversal invariance.Cristian López - 2023 - Synthese 201 (1):1-21.
    In this paper I argue that the concept of time-reversal invariance in physics suffers from metaphysical underdetermination, that is, that the concept may be understood differently depending on one’s metaphysics about time, laws, and a theory’s basic properties. This metaphysical under-determinacy also affects subsidiary debates in philosophy of physics that rely on the concept of time-reversal invariance, paradigmatically the problem of the arrow of time. I bring up three cases that, I believe, fairly illustrate my point. I conclude, on the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time Reversal.Bryan W. Roberts - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    This article deals with the question of what time reversal means. It begins with a presentation of the standard account of time reversal, with plenty of examples, followed by a popular non-standard account. I argue that, in spite of recent commentary to the contrary, the standard approach to the meaning of time reversal is the only one that is philosophically and physically viable. The article concludes with a few open research problems about time reversal.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many physicists, Galilei invariance (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The “Past Hypothesis”: Not even false.John Earman - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (3):399-430.
    It has become something of a dogma in the philosophy of science that modern cosmology has completed Boltzmann's program for explaining the statistical validity of the Second Law of thermodynamics by providing the low entropy initial state needed to ground the asymmetry in entropic behavior that underwrites our inference about the past. This dogma is challenged on several grounds. In particular, it is argued that it is likely that the Boltzmann entropy of the initial state of the universe is an (...)
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Weak Interactions: Asymmetry of Time or Asymmetry in Time?Jerzy Gołosz - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (1):19-33.
    The paper analyzes the philosophical consequences of the recent discovery of direct violations of the time–reversal symmetry of weak interactions. It shows that although we have here an important case of the time asymmetry of one of the fundamental physical forces which could have had a great impact on the form of our world with an excess of matter over antimatter, this asymmetry cannot be treated as the asymmetry of time itself but rather as an asymmetry of some specific physical (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Maxwell's Paradox: The Metaphysics of Classical Electrodynamics and its Time Reversal Invariance.Valia Allori - 2015 - Analytica: an electronic, open-access journal for philosophy of science 1:1-19.
    In this paper, I argue that the recent discussion on the time - reversal invariance of classical electrodynamics (see (Albert 2000: ch.1), (Arntzenius 2004), (Earman 2002), (Malament 2004),(Horwich 1987: ch.3)) can be best understood assuming that the disagreement among the various authors is actually a disagreement about the metaphysics of classical electrodynamics. If so, the controversy will not be resolved until we have established which alternative is the most natural. It turns out that we have a paradox, namely that the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Spacetime symmetries and the CPT theorem.Hilary Greaves - unknown
    This dissertation explores several issues related to the CPT theorem. Chapter 2 explores the meaning of spacetime symmetries in general and time reversal in particular. It is proposed that a third conception of time reversal, 'geometric time reversal', is more appropriate for certain theoretical purposes than the existing 'active' and 'passive' conceptions. It is argued that, in the case of classical electromagnetism, a particular nonstandard time reversal operation is at least as defensible as the standard view. This unorthodox time reversal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Relic of a Bygone Age? Causation, Time Symmetry and the Directionality Argument.Matt Farr & Alexander Reutlinger - 2013 - Erkenntnis 78 (2):215-235.
    Bertrand Russell famously argued that causation is not part of the fundamental physical description of the world, describing the notion of cause as “a relic of a bygone age”. This paper assesses one of Russell’s arguments for this conclusion: the ‘Directionality Argument’, which holds that the time symmetry of fundamental physics is inconsistent with the time asymmetry of causation. We claim that the coherence and success of the Directionality Argument crucially depends on the proper interpretation of the ‘ time symmetry’ (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Two Views on Time Reversal.Jill North - 2008 - Philosophy of Science 75 (2):201-223.
    In a recent paper, Malament (2004) employs a time reversal transformation that differs from the standard one, without explicitly arguing for it. This is a new and important understanding of time reversal that deserves arguing for in its own right. I argue that it improves upon the standard one. Recent discussion has focused on whether velocities should undergo a time reversal operation. I address a prior question: What is the proper notion of time reversal? This is important, for it will (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Philosophy of statistical mechanics.Lawrence Sklar - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)A field guide to recent work on the foundations of statistical mechanics.Roman Frigg - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate. pp. 99-196.
    This is an extensive review of recent work on the foundations of statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Understanding Time Reversal in Quantum Mechanics: A New Derivation.Shan Gao - 2022 - Foundations of Physics 52 (5):1-7.
    Why does time reversal involve two operations, a temporal reflection and the operation of complex conjugation? Why is it that time reversal preserves position and reverses momentum and spin? This puzzle of time reversal in quantum mechanics has been with us since Wigner’s first presentation. In this paper, I propose a new solution to this puzzle. First, it is shown that the standard account of time reversal can be derived based on the assumption that the probability current is reversed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Arrow of Time in Physics.David Wallace - 2013 - In Adrian Bardon & Heather Dyke (eds.), A Companion to the Philosophy of Time. Malden, MA: Wiley-Blackwell. pp. 262–281.
    Every process studied in any science other than physics defines an arrow of time – to say nothing for the directedness of the processes of causation, inference, memory, control, and counterfactual dependence that occur in everyday life. The discussion in this chapter is confined to the arrow of time as it occurs in physics. The chapter briefly discusses those features of microscopic physics, which seem to conflict with time asymmetry. It explains just how this conflict plays out in the important (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Against pointillisme about mechanics.Jeremy Butterfield - 2006 - British Journal for the Philosophy of Science 57 (4):709-753.
    This paper forms part of a wider campaign: to deny pointillisme, the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the concept of velocity in classical mechanics; especially against proposals by Tooley, Robinson and Lewis. (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Time Reversal in Classical Electromagnetism.Frank Arntzenius & Hilary Greaves - 2009 - British Journal for the Philosophy of Science 60 (3):557-584.
    Richard Feynman has claimed that anti-particles are nothing but particles `propagating backwards in time'; that time reversing a particle state always turns it into the corresponding anti-particle state. According to standard quantum field theory textbooks this is not so: time reversal does not turn particles into anti-particles. Feynman's view is interesting because, in particular, it suggests a nonstandard, and possibly illuminating, interpretation of the CPT theorem. In this paper, we explore a classical analog of Feynman's view, in the context of (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Time reversal invariance and ontology.Ward Struyve - forthcoming - British Journal for the Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Three facets of time-reversal symmetry.Cristian Lopez - 2021 - European Journal for Philosophy of Science 11 (2):1-19.
    The notion of time reversal has caused some recent controversy in philosophy of physics. The debate has mainly put the focus on how the concept of time reversal should be formally implemented across different physical theories and models, as if time reversal were a single, unified concept that physical theories should capture. In this paper, I shift the focus of the debate and defend that the concept of time reversal involves at least three facets, where each of them gives rise (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Three myths about time reversal in quantum theory.Bryan W. Roberts - 2017 - Philosophy of Science 84 (2):315-334.
    Many have suggested that the transformation standardly referred to as `time reversal' in quantum theory is not deserving of the name. I argue on the contrary that the standard definition is perfectly appropriate, and is indeed forced by basic considerations about the nature of time in the quantum formalism.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Discussion: Malament on Time Reversal.Stephen Leeds - 2006 - Philosophy of Science 73 (4):448-458.
    David Malament has recently responded to David Albert's argument that classical electrodynamics is not time-reversal invariant by introducing a novel conception of time reversal, which supports the conventional view that under time reversal the magnetic field changes sign but the electric field remains unchanged. I will argue here that Malament's transformation has both passive and active versions. I will claim that the passive version is not relevant to Albert's argument, and the active version does not lead to the conventional transformation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Galilean Invariance of the Pilot-Wave Theory.Valia Allori - 2022 - Foundations of Physics 52 (5):1-21.
    Many agree that the pilot-wave theory is to be understood as a first-order theory, in which the law constrains the velocity of the particles. However, while Dürr, Goldstein and Zanghì maintain that the pilot-wave theory is Galilei invariant, Valentini argues that such a symmetry is mathematical but it has no physical significance. Moreover, some wavefunction realists insist that the pilot-wave theory is not Galilei invariant in any sense. It has been maintained by some that this disagreement originates in the disagreement (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Prospects for a new account of time reversal.Daniel J. Peterson - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 49:42-56.
    In this paper I draw the distinction between intuitive and theory-relative accounts of the time reversal symmetry and identify problems with each. I then propose an alternative to these two types of accounts that steers a middle course between them and minimizes each account’s problems. This new account of time reversal requires that, when dealing with sets of physical theories that satisfy certain constraints, we determine all of the discrete symmetries of the physical laws we are interested in and look (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations