Switch to: References

Citations of:

Science in the age of computer simulation

Chicago: University of Chicago Press (2010)

Add citations

You must login to add citations.
  1. The case of the missing satellites.Katia Wilson - 2017 - Synthese 198 (Suppl 21):1-21.
    In the late 1990s, computational technology had advanced sufficiently that astrophysicists were able to construct reasonably high resolution computer simulations of the Local Group of galaxies. These simulations indicated there should be around 250 small satellite galaxies orbiting the Milky Way and Andromeda. In the real Local Group, however, only around 40 satellites had been observed, and only twenty or so more have been discovered since then. Despite this discrepancy in numbers, claims have been made in recent years that the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Gluing life together. Computer simulation in the life sciences: an introduction.Janina Wellmann - 2018 - History and Philosophy of the Life Sciences 40 (4):70.
    Over the course of the last three decades, computer simulations have become a major tool of doing science and engaging with the world, not least in an effort to predict and intervene in a future to come. Born in the context of the Second World War and the discipline of physics, simulations have long spread into most diverse fields of enquiry and technological application. This paper introduces a topical collection focussing on simulations in the life sciences. Echoing the current state (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Models and mechanisms in psychological explanation.Daniel A. Weiskopf - 2011 - Synthese 183 (3):313-338.
    Mechanistic explanation has an impressive track record of advancing our understanding of complex, hierarchically organized physical systems, particularly biological and neural systems. But not every complex system can be understood mechanistically. Psychological capacities are often understood by providing cognitive models of the systems that underlie them. I argue that these models, while superficially similar to mechanistic models, in fact have a substantially more complex relation to the real underlying system. They are typically constructed using a range of techniques for abstracting (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • The strategy of model building in climate science.Lachlan Douglas Walmsley - 2020 - Synthese 199 (1-2):745-765.
    In the 1960s, theoretical biologist Richard Levins criticised modellers in his own discipline of population biology for pursuing the “brute force” strategy of building hyper-realistic models. Instead of exclusively chasing complexity, Levins advocated for the use of multiple different kinds of complementary models, including much simpler ones. In this paper, I argue that the epistemic challenges Levins attributed to the brute force strategy still apply to state-of-the-art climate models today: they have big appetites for unattainable data, they are limited by (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Underdetermination and Theory-Ladenness Against Impartiality.Nicla Vassallo - 2015 - ProtoSociology 32:216-234.
    The aim of this paper is to show that science, understood as pure research, ought not to be affected by non-epistemic values and thus to defend the traditional ideal of value-free science. First, we will trace the distinction between science and technology, arguing that science should be identified with pure research and that any non-epistemic concern should be di­rected toward technology and technological research. Second, we will examine different kinds of values and the roles they can play in scientific research (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Model Organisms as Simulators: The Context of Cross-Species Research and Emergence.Sim-Hui Tee - 2019 - Axiomathes 29 (4):363-382.
    Model organisms are a living form of scientific models. Despite the widespread use of model organisms in scientific research, the actual representational relationship between model organisms and their target species is often poorly characterized in the context of cross-species research. Many model organisms do not represent the target species adequately, let alone accurately. This is partly due to the complex and emergent life phenomena in the organism, and partly due to the fact that a model organism is always taken to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representation-supporting model elements.Sim-Hui Tee - 2020 - Biology and Philosophy 35 (1):1-24.
    It is assumed that scientific models contain no superfluous model elements in scientific representation. A representational model is constructed with all the model elements serving the representational purpose. The received view has it that there are no redundant model elements which are non-representational. Contrary to this received view, I argue that there exist some non-representational model elements which are essential in scientific representation. I call them representation-supporting model elements in virtue of the fact that they play the role to support (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Old and New Problems in Philosophy of Measurement.Eran Tal - 2013 - Philosophy Compass 8 (12):1159-1173.
    The philosophy of measurement studies the conceptual, ontological, epistemic, and technological conditions that make measurement possible and reliable. A new wave of philosophical scholarship has emerged in the last decade that emphasizes the material and historical dimensions of measurement and the relationships between measurement and theoretical modeling. This essay surveys these developments and contrasts them with earlier work on the semantics of quantity terms and the representational character of measurement. The conclusions highlight four characteristics of the emerging research program in (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • How Computational Models Predict the Behavior of Complex Systems.John Symons & Fabio Boschetti - 2013 - Foundations of Science 18 (4):809-821.
    In this paper, we argue for the centrality of prediction in the use of computational models in science. We focus on the consequences of the irreversibility of computational models and on the conditional or ceteris paribus, nature of the kinds of their predictions. By irreversibility, we mean the fact that computational models can generally arrive at the same state via many possible sequences of previous states. Thus, while in the natural world, it is generally assumed that physical states have a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Can we trust Big Data? Applying philosophy of science to software.John Symons & Ramón Alvarado - 2016 - Big Data and Society 3 (2).
    We address some of the epistemological challenges highlighted by the Critical Data Studies literature by reference to some of the key debates in the philosophy of science concerning computational modeling and simulation. We provide a brief overview of these debates focusing particularly on what Paul Humphreys calls epistemic opacity. We argue that debates in Critical Data Studies and philosophy of science have neglected the problem of error management and error detection. This is an especially important feature of the epistemology of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Epistemic Entitlements and the Practice of Computer Simulation.John Symons & Ramón Alvarado - 2019 - Minds and Machines 29 (1):37-60.
    What does it mean to trust the results of a computer simulation? This paper argues that trust in simulations should be grounded in empirical evidence, good engineering practice, and established theoretical principles. Without these constraints, computer simulation risks becoming little more than speculation. We argue against two prominent positions in the epistemology of computer simulation and defend a conservative view that emphasizes the difference between the norms governing scientific investigation and those governing ordinary epistemic practices.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Fictions, Conditionals, and Stellar Astrophysics.Mauricio Suárez - 2013 - International Studies in the Philosophy of Science 27 (3):235-252.
    This article argues in favour of an inferential role for fictions in scientific modelling. The argument proceeds by means of a detailed case study, namely models of the internal structure of stars in stellar astrophysics. The main assumptions in such models are described, and it is argued that they are best understood as useful fictions. The role that conditionals play in these models is explained, and it is argued that fictional assumptions play an important role as either background or antecedent (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • From Implausible Artificial Neurons to Idealized Cognitive Models: Rebooting Philosophy of Artificial Intelligence.Catherine Stinson - 2020 - Philosophy of Science 87 (4):590-611.
    There is a vast literature within philosophy of mind that focuses on artificial intelligence, but hardly mentions methodological questions. There is also a growing body of work in philosophy of science about modeling methodology that hardly mentions examples from cognitive science. Here these discussions are connected. Insights developed in the philosophy of science literature about the importance of idealization provide a way of understanding the neural implausibility of connectionist networks. Insights from neurocognitive science illuminate how relevant similarities between models and (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Making coherent senses of success in scientific modeling.Beckett Sterner & Christopher DiTeresi - 2021 - European Journal for Philosophy of Science 11 (1):1-20.
    Making sense of why something succeeded or failed is central to scientific practice: it provides an interpretation of what happened, i.e. an hypothesized explanation for the results, that informs scientists’ deliberations over their next steps. In philosophy, the realism debate has dominated the project of making sense of scientists’ success and failure claims, restricting its focus to whether truth or reliability best explain science’s most secure successes. Our aim, in contrast, will be to expand and advance the practice-oriented project sketched (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Climate Change and Second-Order Uncertainty: Defending a Generalized, Normative, and Structural Argument from Inductive Risk.Daniel Steel - 2016 - Perspectives on Science 24 (6):696-721.
    This article critically examines a recent philosophical debate on the role of values in climate change forecasts, such as those found in assessment reports of the Intergovernmental Panel on Climate Change. On one side, several philosophers insist that the argument from inductive risk, as developed by Rudner and Douglas among others, applies to this case. AIR aims to show that ethical value judgments should influence decisions about what is sufficient evidence for accepting scientific hypotheses that have implications for policy issues. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Metaphysics within Chemical Physics: The Case of Ab Initio Molecular Dynamics. [REVIEW]Carsten Seck - 2012 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 43 (2):361-375.
    This paper combines naturalized metaphysics and a philosophical reflection on a recently evolving interdisciplinary branch of quantum chemistry, ab initio molecular dynamics. Bridging the gaps among chemistry, physics, and computer science, this cutting-edge research field explores the structure and dynamics of complex molecular many-body systems through computer simulations. These simulations are allegedly crafted solely by the laws of fundamental physics, and are explicitly designed to capture nature as closely as possible. The models and algorithms employed, however, involve many approximations and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stretching the Traditional Notion of Experiment in Computing: Explorative Experiments.Viola Schiaffonati - 2016 - Science and Engineering Ethics 22 (3):647-665.
    Experimentation represents today a ‘hot’ topic in computing. If experiments made with the support of computers, such as computer simulations, have received increasing attention from philosophers of science and technology, questions such as “what does it mean to do experiments in computer science and engineering and what are their benefits?” emerged only recently as central in the debate over the disciplinary status of the discipline. In this work we aim at showing, also by means of paradigmatic examples, how the traditional (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Computational modeling in philosophy: introduction to a topical collection.Simon Scheller, Christoph Merdes & Stephan Hartmann - 2022 - Synthese 200 (2):1-10.
    Computational modeling should play a central role in philosophy. In this introduction to our topical collection, we propose a small topology of computational modeling in philosophy in general, and show how the various contributions to our topical collection fit into this overall picture. On this basis, we describe some of the ways in which computational models from other disciplines have found their way into philosophy, and how the principles one found here still underlie current trends in the field. Moreover, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is a Computer Simulation? A Review of a Passionate Debate.Nicole J. Saam - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):293-309.
    Where should computer simulations be located on the ‘usual methodological map’ which distinguishes experiment from theory? Specifically, do simulations ultimately qualify as experiments or as thought experiments? Ever since Galison raised that question, a passionate debate has developed, pushing many issues to the forefront of discussions concerning the epistemology and methodology of computer simulation. This review article illuminates the positions in that debate, evaluates the discourse and gives an outlook on questions that have not yet been addressed.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Radical Naturalism of Naturalistic Philosophy of Science.Joseph Rouse - 2023 - Topoi 42 (3):719-732.
    Naturalism in the philosophy of science has proceeded differently than the familiar forms of meta-philosophical naturalism in other sub-fields, taking its cues from “science as we know it” (Cartwright in The Dappled World, Oxford University Press, Oxford, 1999, p. 1) rather than from a philosophical conception of “the Scientific Image.” Its primary focus is scientific practice, and its philosophical analyses are complementary and accountable to empirical studies of scientific work. I argue that naturalistic philosophy of science is nevertheless criterial for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The epistemic superiority of experiment to simulation.Sherrilyn Roush - 2018 - Synthese 195 (11):4883-4906.
    This paper defends the naïve thesis that the method of experiment has per se an epistemic superiority over the method of computer simulation, a view that has been rejected by some philosophers writing about simulation, and whose grounds have been hard to pin down by its defenders. I further argue that this superiority does not come from the experiment’s object being materially similar to the target in the world that the investigator is trying to learn about, as both sides of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Modeling multiscale patterns: active matter, minimal models, and explanatory autonomy.Collin Rice - 2022 - Synthese 200 (6):1-35.
    Both ecologists and statistical physicists use a variety of highly idealized models to study active matter and self-organizing critical phenomena. In this paper, I show how universality classes play a crucial role in justifying the application of highly idealized ‘minimal’ models to explain and understand the critical behaviors of active matter systems across a wide range of scales and scientific fields. Appealing to universality enables us to see why the same minimal models can be used to explain and understand behaviors (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fictionalism, Semantics, and Ontology.Gordon Michael Purves - 2018 - Perspectives on Science 26 (1):52-75.
    In a previous article, I argued that some recent philosophical work on the use of fictions in science is, while illuminating about some aspects of current scientific practice, unduly limited to cases of well-established fictions. In other words, this earlier work contended, a philosophical account of scientific fictions can do more than merely describe scientific practices, but can aid in the resolution of disputes about the proper interpretation of scientific theories and the epistemic status of some scientific models. In the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Minimalist Epistemology for Agent-Based Simulations in the Artificial Sciences.Giuseppe Primiero - 2019 - Minds and Machines 29 (1):127-148.
    The epistemology of computer simulations has become a mainstream topic in the philosophy of technology. Within this large area, significant differences hold between the various types of models and simulation technologies. Agent-based and multi-agent systems simulations introduce a specific constraint on the types of agents and systems modelled. We argue that such difference is crucial and that simulation for the artificial sciences requires the formulation of its own specific epistemological principles. We present a minimally committed epistemology which relies on the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Re-evaluating semi-empirical computer simulations in quantum chemistry.María Silvia Polzella & Penélope Lodeyro - 2019 - Foundations of Chemistry 21 (1):83-95.
    Usually within the context of computer simulations in quantum chemistry practices, there is a distinction between ab initio and semi-empirical methods. Related to this, a controversy within the scientific and philosophical communities came about regarding the superiority of the ab initio methods due to their theoretical rigor. In this article we re-evaluate the condition of the semi-empirical simulations in this area of research. We examine some of the aspects of this debate that have been considered in philosophy and provide additional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing as Empirical Science- Evolution as a Concept.Paweł Polak - 2016 - Studies in Logic, Grammar and Rhetoric 48 (1):49-69.
    This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Neural Computation and the Computational Theory of Cognition.Gualtiero Piccinini & Sonya Bahar - 2013 - Cognitive Science 37 (3):453-488.
    We begin by distinguishing computationalism from a number of other theses that are sometimes conflated with it. We also distinguish between several important kinds of computation: computation in a generic sense, digital computation, and analog computation. Then, we defend a weak version of computationalism—neural processes are computations in the generic sense. After that, we reject on empirical grounds the common assimilation of neural computation to either analog or digital computation, concluding that neural computation is sui generis. Analog computation requires continuous (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Making sense of modeling: beyond representation. [REVIEW]Isabelle Peschard - 2011 - European Journal for Philosophy of Science 1 (3):335-352.
    Making sense of modeling: beyond representation Content Type Journal Article Category Original paper in Philosophy of Science Pages 335-352 DOI 10.1007/s13194-011-0032-8 Authors Isabelle Peschard, Philosophy Department, San Francisco State University, 1600 Holloway Ave, San Francisco, CA 94132, USA Journal European Journal for Philosophy of Science Online ISSN 1879-4920 Print ISSN 1879-4912 Journal Volume Volume 1 Journal Issue Volume 1, Number 3.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Agent-based Models as Fictive Instantiations of Ecological Processes.Steven L. Peck - 2012 - Philosophy, Theory, and Practice in Biology 4 (20130604).
    Frigg and Reiss (2009) argue that philosophical problems in simulation bear enough resemblance to recognized issues in the philosophy of modeling that they only pose challenges analogous to those found in standard analytic models used to represent natural systems. They suggest that there are no new philosophical problems in computer simulation modeling beyond those found in traditional mathematical modeling. Winsberg (2009) has countered that there appear to be genuinely new epistemological problems in simulation modeling because the knowledge obtained from them (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • “Why These Laws?”—Multiverse Discourse as a Scene of Response.Jacob Pearce - 2017 - Perspectives on Science 25 (3):324-354.
    By the end of the twentieth century, many prominent cosmologists were fascinated by the questions why is the universe the way it is, and why does the universe appear to be just right for life to emerge.1 Indeed, the shift to posing questions beginning with why rather than what or how is a relatively recent development in modern cosmology. This paper begins by looking at the emergence of why questions in cosmological discourse by tracing affiliated anthropic reasoning and fine-tuning arguments (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Values and uncertainties in climate prediction, revisited.Wendy Parker - 2014 - Studies in History and Philosophy of Science Part A 46:24-30.
    Philosophers continue to debate both the actual and the ideal roles of values in science. Recently, Eric Winsberg has offered a novel, model-based challenge to those who argue that the internal workings of science can and should be kept free from the influence of social values. He contends that model-based assignments of probability to hypotheses about future climate change are unavoidably influenced by social values. I raise two objections to Winsberg’s argument, neither of which can wholly undermine its conclusion but (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Experiments, Simulations, and Epistemic Privilege.Emily C. Parke - 2014 - Philosophy of Science 81 (4):516-536.
    Experiments are commonly thought to have epistemic privilege over simulations. Two ideas underpin this belief: first, experiments generate greater inferential power than simulations, and second, simulations cannot surprise us the way experiments can. In this article I argue that neither of these claims is true of experiments versus simulations in general. We should give up the common practice of resting in-principle judgments about the epistemic value of cases of scientific inquiry on whether we classify those cases as experiments or simulations, (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Evidence and Knowledge from Computer Simulation.Wendy S. Parker - 2020 - Erkenntnis 87 (4):1521-1538.
    Can computer simulation results be evidence for hypotheses about real-world systems and phenomena? If so, what sort of evidence? Can we gain genuinely new knowledge of the world via simulation? I argue that evidence from computer simulation is aptly characterized as higher-order evidence: it is evidence that other evidence regarding a hypothesis about the world has been collected. Insofar as particular epistemic agents do not have this other evidence, it is possible that they will gain genuinely new knowledge of the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Simulating the world: The digital enactment of pandemics as a mode of global self-observation.Sven Opitz - 2017 - European Journal of Social Theory 20 (3):392-416.
    If the twentieth century was the age of the world picture taken as a photograph of the Whole Earth from outer space, today’s observations of the planet are produced by means of computer simulation. Pandemic models are of paramount sociological interest in this respect, since modelling contagion is closely intertwined with modelling the material connectivities of social life. By envisioning the global dynamics of disease transmission, pandemic simulations enact the relationscapes of a transnational world. This article seeks to analyse such (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Simulacrum Account of Dispositional Properties.Marco J. Nathan - 2013 - Noûs 49 (2):253-274.
    This essay presents a model-theoretic account of dispositional properties, according to which dispositions are not ordinary properties of real entities; dispositions capture the behavior of abstract, idealized models. This account has several payoffs. First, it saves the simple conditional analysis of dispositions. Second, it preserves the general connection between dispositions and regularities, despite the fact that some dispositions are not grounded in actual regularities. Finally, it brings together the analysis and the explanation of dispositions under a unified framework.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Trustworthy simulations and their epistemic hierarchy.Peter Mättig - 2021 - Synthese 199 (5-6):14427-14458.
    We analyze the usage of computer simulation at the LHC and derive seven jointly necessary requirements for a simulation to be considered ’trustworthy’, such that it can be used as proxy for experiments. We show that these requirements can also be applied to systems without direct experimental access and discuss their validity for properties that have not yet been probed. While being necessary, these requirements are not sufficient. Such trustworthy simulations will be analyzed for the relative epistemic statuses of simulation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • After Fifty Years, Why Are Protein X-ray Crystallographers Still in Business?Sandra D. Mitchell & Angela M. Gronenborn - 2015 - British Journal for the Philosophy of Science:axv051.
    It has long been held that the structure of a protein is determined solely by the interactions of the atoms in the sequence of amino acids of which it is composed, and thus the stable, biologically functional conformation should be predictable by ab initio or de novo methods. However, except for small proteins, ab initio predictions have not been successful. We explain why this is the case and argue that the relationship among the different methods, models, and representations of protein (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is this assumption as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Representing the World with Inconsistent Mathematics.Colin McCullough-Benner - 2019 - British Journal for the Philosophy of Science 71 (4):1331-1358.
    According to standard accounts of mathematical representations of physical phenomena, positing structure-preserving mappings between a physical target system and the structure picked out by a mathematical theory is essential to such representations. In this paper, I argue that these accounts fail to give a satisfactory explanation of scientific representations that make use of inconsistent mathematical theories and present an alternative, robustly inferential account of mathematical representation that provides not just a better explanation of applications of inconsistent mathematics, but also a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The computational philosophy: simulation as a core philosophical method.Conor Mayo-Wilson & Kevin J. S. Zollman - 2021 - Synthese 199 (1-2):3647-3673.
    Modeling and computer simulations, we claim, should be considered core philosophical methods. More precisely, we will defend two theses. First, philosophers should use simulations for many of the same reasons we currently use thought experiments. In fact, simulations are superior to thought experiments in achieving some philosophical goals. Second, devising and coding computational models instill good philosophical habits of mind. Throughout the paper, we respond to the often implicit objection that computer modeling is “not philosophical.”.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Causal Concepts Guiding Model Specification in Systems Biology.Dana Matthiessen - 2017 - Disputatio 9 (47):499-527.
    In this paper I analyze the process by which modelers in systems biology arrive at an adequate representation of the biological structures thought to underlie data gathered from high-throughput experiments. Contrary to views that causal claims and explanations are rare in systems biology, I argue that in many studies of gene regulatory networks modelers aim at a representation of causal structure. In addressing modeling challenges, they draw on assumptions informed by theory and pragmatic considerations in a manner that is guided (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computer simulations and experiments: The case of the Higgs boson.Michela Massimi & Wahid Bhimji - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 51 (C):71-81.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Modeling the social organization of science: Chasing complexity through simulations.Carlo Martini & Manuela Fernández Pinto - 2016 - European Journal for Philosophy of Science 7 (2):221-238.
    At least since Kuhn’s Structure, philosophers have studied the influence of social factors in science’s pursuit of truth and knowledge. More recently, formal models and computer simulations have allowed philosophers of science and social epistemologists to dig deeper into the detailed dynamics of scientific research and experimentation, and to develop very seemingly realistic models of the social organization of science. These models purport to be predictive of the optimal allocations of factors, such as diversity of methods used in science, size (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Modelling and the Nation: Institutionalising Climate Prediction in the UK, 1988–92.Martin Mahony & Mike Hulme - 2016 - Minerva 54 (4):445-470.
    How climate models came to gain and exercise epistemic authority has been a key concern of recent climate change historiography. Using newly released archival materials and recently conducted interviews with key actors, we reconstruct negotiations between UK climate scientists and policymakers which led to the opening of the Hadley Centre for Climate Prediction and Research in 1990. We historicize earlier arguments about the unique institutional culture of the Hadley Centre, and link this culture to broader characteristics of UK regulatory practice (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Modeling complexity: cognitive constraints and computational model-building in integrative systems biology.Miles MacLeod & Nancy J. Nersessian - 2018 - History and Philosophy of the Life Sciences 40 (1):17.
    Modern integrative systems biology defines itself by the complexity of the problems it takes on through computational modeling and simulation. However in integrative systems biology computers do not solve problems alone. Problem solving depends as ever on human cognitive resources. Current philosophical accounts hint at their importance, but it remains to be understood what roles human cognition plays in computational modeling. In this paper we focus on practices through which modelers in systems biology use computational simulation and other tools to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Computer simulation and the features of novel empirical data.Greg Lusk - 2016 - Studies in History and Philosophy of Science Part A 56:145-152.
    In an attempt to determine the epistemic status of computer simulation results, philosophers of science have recently explored the similarities and differences between computer simulations and experiments. One question that arises is whether and, if so, when, simulation results constitute novel empirical data. It is often supposed that computer simulation results could never be empirical or novel because simulations never interact with their targets, and cannot go beyond their programming. This paper argues against this position by examining whether, and under (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Objectivity and a comparison of methodological scenario approaches for climate change research.Elisabeth A. Lloyd & Vanessa J. Schweizer - 2014 - Synthese 191 (10):2049-2088.
    Climate change assessments rely upon scenarios of socioeconomic developments to conceptualize alternative outcomes for global greenhouse gas emissions. These are used in conjunction with climate models to make projections of future climate. Specifically, the estimations of greenhouse gas emissions based on socioeconomic scenarios constrain climate models in their outcomes of temperatures, precipitation, etc. Traditionally, the fundamental logic of the socioeconomic scenarios—that is, the logic that makes them plausible—is developed and prioritized using methods that are very subjective. This introduces a fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What Counts as Scientific Data? A Relational Framework.Sabina Leonelli - 2015 - Philosophy of Science 82 (5):810-821.
    This paper proposes an account of scientific data that makes sense of recent debates on data-driven and ‘big data’ research, while also building on the history of data production and use particularly within biology. In this view, ‘data’ is a relational category applied to research outputs that are taken, at specific moments of inquiry, to provide evidence for knowledge claims of interest to the researchers involved. They do not have truth-value in and of themselves, nor can they be seen as (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Standing on the Shoulders of Giants—And Then Looking the Other Way? Epistemic Opacity, Immersion, and Modeling in Hydraulic Engineering.Matthijs Kouw - 2016 - Perspectives on Science 24 (2):206-227.
    Over the course of the twentieth century, hydraulic engineering has come to rely primarily on the use of computational models. Disco and van den Ende hint towards the reasons for widespread adoption of computational models by pointing out that such models fulfill a crucial role as management tools in Dutch water management, and meet a more general desire to quantify water-related phenomena. The successful application of computational models implies blackboxing : “[w]hen a machine runs efficiently … one need focus only (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Don’t Blame the Idealizations.Nicholaos Jones - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):85-100.
    Idealizing conditions are scapegoats for scientific hypotheses, too often blamed for falsehood better attributed to less obvious sources. But while the tendency to blame idealizations is common among both philosophers of science and scientists themselves, the blame is misplaced. Attention to the nature of idealizing conditions, the content of idealized hypotheses, and scientists’ attitudes toward those hypotheses shows that idealizing conditions are blameless when hypotheses misrepresent. These conditions help to determine the content of idealized hypotheses, and they do so in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations