In Hegel ou Spinoza,1 Pierre Macherey challenges the influence of Hegel’s reading of Spinoza by stressing the degree to which Spinoza eludes the grasp of the Hegelian dialectical progression of the history of philosophy. He argues that Hegel provides a defensive misreading of Spinoza, and that he had to “misread him” in order to maintain his subjective idealism. The suggestion being that Spinoza’s philosophy represents, not a moment that can simply be sublated and subsumed within the dialectical progression of the (...) history of philosophy, but rather an alternative point of view for the development of a philosophy that overcomes Hegelian idealism. Gilles Deleuze also considers Spinoza’s philosophy to resist the totalising effects of the dialectic. Indeed, Deleuze demonstrates, by means of Spinoza, that a more complex philosophy antedates Hegel’s, which cannot be supplanted by it. Spinoza therefore becomes a significant figure in Deleuze’s project of tracing an alternative lineage in the history of philosophy, which, by distancing itself from Hegelian idealism, culminates in the construction of a philosophy of difference. It is Spinoza’s role in this project that will be demonstrated in this paper by differentiating Deleuze’s interpretation of the geometrical example of Spinoza’s Letter XII (on the problem of the infinite) in Expressionism in Philosophy, Spinoza,2 from that which Hegel presents in the Science of Logic.3. (shrink)
El cálculo infinitesimal elaborado por Leibniz en la segunda mitad del siglo XVII tuvo, como era de esperarse, muchos adeptos pero también importantes críticos. Uno pensaría que cuatro siglos después de haber sido presentado éste, en las revistas, academias y sociedades de la época, habría ya poco qué decir sobre el mismo; sin embargo, cuando uno se acerca al cálculo de Leibniz –tal y como me sucedió hace tiempo– fácilmente puede percatarse de que el debate en torno al cálculo (...) leibniziano ha trascendido las fronteras temporales del siglo XVII y XVIII y aún sigue vigente, al menos en parte y sobre ciertos puntos específicos. Lo anterior resulta un tanto inquietante, entre otras cosas porque implica que hay que revisar el cálculo leibniziano para tratar de entender el motivo por el que se sigue debatiendo actualmente. El propósito de este artículo no es presentar las tesis principales del cálculo, tampoco hacer una defensa del mismo y mucho menos desarrollar una crítica de sus fundamentos matemáticos, epistémicos u ontológicos. Mi propósito es menos ambicioso, pretendo mostrar, en primer lugar, dos de las primeras objeciones que se formularon contra el cálculo infinitesimal y que fueron hechas por dos contemporáneos de Leibniz, a saber, Rolle y Nieuwentijit; por otro lado, y sirviéndome de lo anterior, quiero presentar dos comentaristas actuales que abordan el tema del cálculo. Lo anterior con el objetivo de ilustrar cuál es el estado de la cuestión, es decir, en qué momento está el debate sobre el cálculo infinitesimal y en qué se enfocan actualmente los comentaristas al hablar sobre él, pues al hacerlo –e incluso a veces sin pretenderlo– mantienen abierto el debate sobre los aciertos y desaciertos del método infinitesimal. (shrink)
Leibniz is well known for his formulation of the infinitesimalcalculus. Nevertheless, the nature and logic of his discovery are seldom questioned: does it belong more to mathematics or metaphysics, and how is it connected to his physics? This book, composed of fourteen essays, investigates the nature and foundation of the calculus, its relationship to the physics of force and principle of continuity, and its overall method and metaphysics. The Leibnizian calculus is presented in its origin (...) and context together with its main contributors: Archimedes, Cavalieri, Wallis, Hobbes, Pascal, Huygens, Bernoulli, and Nieuwentijt. Many of us know and probably have used the Leibnizian formula: to .. (shrink)
To explore the extent of embeddability of Leibnizian infinitesimalcalculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in (...) Leibnizian infinitesimalcalculus, then modern infinitesimal frameworks are more appropriate to interpreting Leibnizian infinitesimalcalculus than modern Weierstrassian ones. (shrink)
In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematical truth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of (...) limits and infinitesimals do not entail the paradoxes of the infinitesimal and continuum. Essential to that defense is an interpretation, developed in the paper, of Cohen's positions in the PIM as deeply rationalist. The interest in developing this interpretation is not just that it reveals how Cohen's views in the PIM avoid the paradoxes of the infinitesimal and continuum. It also reveals some of what is at stake, both historically and philosophically, in Russell's criticism of Cohen. (shrink)
Maimon’s theory of the differential has proved to be a rather enigmatic aspect of his philosophy. By drawing upon mathematical developments that had occurred earlier in the century and that, by virtue of the arguments presented in the Essay and comments elsewhere in his writing, I suggest Maimon would have been aware of, what I propose to offer in this paper is a study of the differential and the role that it plays in the Essay on Transcendental Philosophy (1790). In (...) order to do so, this paper focuses upon Maimon’s criticism of the role played by mathematics in Kant’s philosophy, to which Maimon offers a Leibnizian solution based on the infinitesimalcalculus. The main difficulties that Maimon has with Kant’s system, the second of which will be the focus of this paper, include the presumption of the existence of synthetic a priori judgments, i.e. the question quid facti, and the question of whether the fact of our use of a priori concepts in experience is justified, i.e. the question quid juris. Maimon deploys mathematics, specifically arithmetic, against Kant to show how it is possible to understand objects as having been constituted by the very relations between them, and he proposes an alternative solution to the question quid juris, which relies on the concept of the differential. However, despite these arguments, Maimon remains sceptical with respect to the question quid facti. (shrink)
In the paper “Math Anxiety,” Aden Evens explores the manner by means of which concepts are implicated in the problematic Idea according to the philosophy of Gilles Deleuze. The example that Evens draws from Difference and Repetition in order to demonstrate this relation is a mathematics problem, the elements of which are the differentials of the differential calculus. What I would like to offer in the present paper is an historical account of the mathematical problematic that Deleuze deploys in (...) his philosophy, and an introduction to the role that this problematic plays in the develop- ment of his philosophy of difference. One of the points of departure that I will take from the Evens paper is the theme of “power series.”2 This will involve a detailed elaboration of the mechanism by means of which power series operate in the differential calculus deployed by Deleuze in Difference and Repetition. Deleuze actually constructs an alternative history of mathematics that establishes an historical conti- nuity between the differential point of view of the infinitesimalcalculus and modern theories of the differential calculus. It is in relation to the differential point of view of the infinitesimalcalculus that Deleuze determines a differential logic which he deploys, in the form of a logic of different/ciation, in the development of his proj- ect of constructing a philosophy of difference. (shrink)
We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimalcalculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and (...) mathematical. Our main thesis is that Marburg neo-Kantian philosophy formulated a sophisticated position towards the problems raised by the concepts of limits and infinitesimals. The Marburg school neither clung to the traditional approach of logically and metaphysically dubious infinitesimals, nor whiggishly subscribed to the new orthodoxy of the “great triumvirate” of Cantor, Dedekind, and Weierstrass that declared infinitesimals conceptus nongrati in mathematical discourse. Rather, following Cohen’s lead, the Marburg philosophers sought to clarify Leibniz’s principle of continuity, and to exploit it in making sense of infinitesimals and related concepts. (shrink)
Explications of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in 'The Fold: Leibniz and the Baroque' focus predominantly on the role of the infinitesimalcalculus developed by Leibniz.1 While not underestimat- ing the importance of the infinitesimalcalculus and the law of continuity as reflected in the calculus of infinite series to any understanding of Leibniz’s metaphysics and to Deleuze’s reconstruction of it in The Fold, what I propose to examine in this paper is (...) the role played by other developments in mathematics that Deleuze draws upon, including those made by a number of Leibniz’s near contemporaries – the projective geometry that has its roots in the work of Desargues (1591–1661) and the ‘proto-topology’ that appears in the work of Du ̈rer (1471–1528) – and a number of the subsequent developments in these fields of mathematics. Deleuze brings this elaborate conjunction of material together in order to set up a mathematical idealization of the system that he considers to be implicit in Leibniz’s work. The result is a thoroughly mathematical explication of the structure of Leibniz’s metaphysics. What is provided in this paper is an exposition of the very mathematical underpinnings of this Deleuzian account of the structure of Leibniz’s metaphysics, which, I maintain, subtends the entire text of The Fold. (shrink)
The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimalcalculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a (...) number of subsequent developments in mathematics, the rudiments of which can be more or less located in Leibniz’s own work—including the theory of functions and singularities, the Weierstrassian theory of analytic continuity, and Poincaré’s theory of automorphic functions. Deleuze then retrospectively maps these developments back onto the structure of Leibniz’s metaphysics. While the Weierstrassian theory of analytic continuity serves to clarify Leibniz’s work, Poincaré’s theory of automorphic functions offers a solution to overcome and extend the limits that Deleuze identifies in Leibniz’s metaphysics. Deleuze brings this elaborate conjunction of material together in order to set up a mathematical idealization of the system that he considers to be implicit in Leibniz’s work. The result is a thoroughly mathematical explication of the structure of Leibniz’s metaphysics. This essay is an exposition of the very mathematical underpinnings of this Deleuzian account of the structure of Leibniz’s metaphysics, which, I maintain, subtends the entire text of The Fold. (shrink)
Much has been made of Deleuze’s Neo-Leibnizianism,3 however not very much detailed work has been done on the specific nature of Deleuze’s critique of Leibniz that positions his work within the broader framework of Deleuze’s own philo- sophical project. The present chapter undertakes to redress this oversight by providing an account of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold. Deleuze provides a systematic account of the structure of Leibniz’s metaphys- ics in terms of its mathematical underpinnings. (...) However, in doing so, Deleuze draws upon not only the mathematics developed by Leibniz – including the law of continuity as reflected in the calculus of infinite series and the infinitesimalcalculus – but also the developments in mathematics made by a number of Leibniz’s contemporaries – including Newton’s method of fluxions – and a number of subsequent developments in mathematics, the rudiments of which can be more or less located in Leibniz’s own work – including the theory of functions and singularities, the theory of continuity and Poincaré’s theory of automorphic functions. Deleuze then retrospectively maps these developments back onto the structure of Leibniz’s metaphysics. While the theory of continuity serves to clarify Leibniz’s work, Poincaré’s theory of automorphic functions offers a solution to overcome and extend the limits that Deleuze identifies in Leibniz’s metaphysics. Deleuze brings this elaborate conjunction of material together in order to set up a mathematical idealization of the system that he considers to be implicit in Leibniz’s work. The result is a thoroughly mathematical explication of the structure of Leibniz’s metaphysics. What is provided in this chapter is an exposition of the very mathematical underpinnings of this Deleuzian account of the structure of Leibniz’s metaphysics, which, I maintain, subtends the entire text of The Fold. (shrink)
The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal (...) class='Hi'>calculus in his treatment of the problem of the infinitesimal. Against the role that Hegel assigns to integration as the inverse transformation of differentiation in the development of his dialectical logic, Deleuze strategically redeploys Leibniz's account of integration as a method of summation in the form of a series in the development of his philosophy of difference. By demonstrating the relation between the differential point of view of the Leibnizian infinitesimalcalculus and the differential calculus of contemporary mathematics, I argue that Deleuze effectively bypasses the methods of the differential calculus which Hegel uses to support the development of the dialectical logic, and by doing so, sets up the critical perspective from which to construct an alternative logic of relations characteristic of a philosophy of difference. The mode of operation of this logic is then demonstrated by drawing upon the mathematical philosophy of Albert Lautman (1908-44), which plays a significant role in Deleuze's project of constructing a philosophy of difference. Indeed, the logic of relations that Deleuze constructs is dialectical in the Lautmanian sense. (shrink)
This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimalcalculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle (...) on which Benjamin bases the structure of becoming. Tracking the transformation of the process of “filling time” from its logical to its historical iteration, or from what Cohen called the “fundamental acts of time” in Logik der reinen Erkenntnis to Benjamin’s image of a language of language (qua language touching itself), the paper will suggest that for Benjamin, moving from 0 to 1 is anything but paradoxical, and instead relies on the possibility for a mathematical function to capture the nature of historical occurrence beyond paradoxes of language or phenomenality. (shrink)
Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late nineteenth century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis (in the sense of the infinitesimalcalculus) received much attention in the nineteenth century. They helped instigate what Hans Hahn called a “crisis of intuition”, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this (...) “crisis” as follows: Mathematicians had for a long time made use of supposedly geometric evidence as a means of proof in much too naive and much too uncritical a way, till the unclarities and mistakes that arose as a result forced a turnabout. Geometrical intuition was now declared to be inadmissible as a means of proof... (p. 67) Avoiding geometrical evidence, Hahn continued, mathematicians aware of this crisis pursued what he called “logicization”, “when the discipline requires nothing but purely logical fundamental concepts and propositions for its development.” On this view, an epistemically ideal mathematics would minimize, or avoid altogether, appeals to visual representations. This would be a radical reformation of past practice, necessary, according to its advocates, for avoiding “unclarities and mistakes” like the one exposed by Peano. (shrink)
This paper is intended to examine Leibniz's Principle of Continuity, as well as the conditions of its application in leibnizian infinitesimalcalculus, in the light of some aspects of formal language developed by Leibniz. It aims at evaluating whether, and to what extent, that principle can be justified on the basis of the logic of Leibniz.
The principle of least action, which has so successfully been applied to diverse fields of physics looks back at three centuries of philosophical and mathematical discussions and controversies. They could not explain why nature is applying the principle and why scalar energy quantities succeed in describing dynamic motion. When the least action integral is subdivided into infinitesimal small sections each one has to maintain the ability to minimise. This however has the mathematical consequence that the Lagrange function at a (...) given point of the trajectory, the dynamic, available energy generating motion, must itself have a fundamental property to minimize. Since a scalar quantity, a pure number, cannot do that, energy must fundamentally be dynamic and time oriented for a consistent understanding. It must have vectorial properties in aiming at a decrease of free energy per state (which would also allow derivation of the second law of thermodynamics). Present physics is ignoring that and applying variation calculus as a formal mathematical tool to impose a minimisation of scalar assumed energy quantities for obtaining dynamic motion. When, however, the dynamic property of energy is taken seriously it is fundamental and has also to be applied to quantum processes. A consequence is that particle and wave are not equivalent, but the wave (distributed energy) follows from the first (concentrated energy). Information, provided from the beginning, an information self-image of matter, is additionally needed to recreate the particle from the wave, shaping a “dynamic” particle-wave duality. It is shown that this new concept of a “dynamic” quantum state rationally explains quantization, the double slit experiment and quantum correlation, which has not been possible before. Some more general considerations on the link between quantum processes, gravitation and cosmological phenomena are also advanced. (shrink)
Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to other (...) modal logics. (shrink)
In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a (...) natural dual of entailment. The calculus, and its tableau variant, not only capture the classical connectives, but also the `information' connectives of four-valued Belnap logics. This answers a question by Avron. (shrink)
In recent years, the e ffort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made (...) to axiomatize the former in a sequent system, there is currently no proof theory for the latter. Moreover, the extant axiomatization of erotetic evocation fails to capture its defeasible character and provides no rules for introducing or eliminating question-forming operators. In contrast, our calculus encodes defeasibility conditions on sequents and provides rules governing the introduction and elimination of erotetic formulas. We demonstrate that an elimination theorem holds for a version of the cut rule that applies to both declarative and erotetic formulas and that the rules for the axiomatic account of question evocation in IEL are admissible in our system. (shrink)
This paper examines systematically which features of a life story (or history) make it good for the subject herself - not aesthetically or morally good, but prudentially good. The tentative narrative calculus presented claims that the prudential narrative value of an event is a function of the extent to which it contributes to her concurrent and non-concurrent goals, the value of those goals, and the degree to which success in reaching the goals is deserved in virtue of exercising agency. (...) The narrative value of a life is a simple sum of the values of individual events that comprise it. I claim that this view best explains and support common intuitions about the significance of the shape of a life. (shrink)
In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a (...)calculus for the Belnap-Dunn logic we have defined earlier can in fact be reused for the purpose of characterising ETL, provided a small alteration is made—initial assignments of signs to the sentences of a sequent to be proved must be different from those used for characterising FDE. While Pietz & Rivieccio define ETL on the language of classical propositional logic we also study its consequence relation on an extension of this language that is functionally complete for the underlying four truth values. On this extension the calculus gets a multiple-tree character—two proof trees may be needed to establish one proof. (shrink)
Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand (...) disjunctions of existential theorems obtained by this elimination procedure. (shrink)
I am presenting a sequent calculus that extends a nonmonotonic consequence relation over an atomic language to a logically complex language. The system is in line with two guiding philosophical ideas: (i) logical inferentialism and (ii) logical expressivism. The extension defined by the sequent rules is conservative. The conditional tracks the consequence relation and negation tracks incoherence. Besides the ordinary propositional connectives, the sequent calculus introduces a new kind of modal operator that marks implications that hold monotonically. Transitivity (...) fails, but for good reasons. Intuitionism and classical logic can easily be recovered from the system. (shrink)
A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a (...) unique framework. The new methodology has allowed us to introduce the Infinity Computer working with such numbers (its simulator has already been realized). Examples dealing with divergent series, infinite sets, and limits are given. (shrink)
The formalisation of Natural Language arguments in a formal language close to it in syntax has been a central aim of Moss’s Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to Natural Language than are Moss’s systems – for instance, (...) is does not use negative nouns. The process also sheds light on formal properties and presuppositions of some inferences it formalises. Directions for future work are outlined. (shrink)
Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We solve this (...) problem by applying recent methods from sorted logics. This paper presents a tableau calculus that combines the proper treatment of partial functions with the efficiency of sorted calculi. (shrink)
This book posits that a singular paradigm in social theory can be discovered by reconstructing the conceptual grammar of Gabriel Tarde’s micro-sociology and by understanding the ways in which Gilles Deleuze’s micro-politics and Michel Foucault’s micro-physics have engaged with it. This is articulated in the infinite social multiplicity-invention-imitation-opposition-open system. Guided by infinitist ontology and an epistemology of infinitesimal difference, this paradigm offers a micro-socio-logic capable of producing new ways of understanding social life and its vicissitudes. In the field of (...) social theory, this can be called the infinitesimal revolution. (shrink)
The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. (...) Next, the geometrical meaning of the double contradiction is considered as follows. A tangent at a point on a convex curve is iterated. Then, the slope of the tangent at the point is sandwiched by two kinds of lines. The first kind of line crosses the curve at the original point and a point to the right of it. The second kind of line crosses the curve at the original point and a point to the left of it. Then, the double contradiction can be applied, and the slope of the tangent is determined as a single value. Finally, the meaning of this method for the foundation of mathematics is considered. We reflect on Dehaene’s notion that the foundation of mathematics is based on the intuitions, which evolve independently. Hence, there may be gaps between intuitions. In fact, the Ancient Greeks identified inconsistency between arithmetic and geometry. However, Eudoxus developed the theory of proportion, which is equivalent to the Dedekind Cut. This allows the iteration of an irrational number by rational numbers as precisely as desired. Simultaneously, we can define the irrational number by the double contradiction, although its existence is not guaranteed. Further, an area of a curved figure is iterated and defined by rectilinear figures using the double contradiction. (shrink)
Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, (...) the degree of co-occurrence of words in context determines how similar the meanings of words are. In this paper, we put these two models together and develop a vector semantics for language based on the simply typed lambda calculus models of natural language. We provide two types of vector semantics: a static one that uses techniques familiar from the truth conditional tradition and a dynamic one based on a form of dynamic interpretation inspired by Heim’s context change potentials. We show how the dynamic model can be applied to entailment between a corpus and a sentence and provide examples. (shrink)
A simple interpretation of quantity calculus is given. Quantities are described as functions from objects, states or processes (or some combination of them) into numbers that satisfy the mutual measurability property. Quantity calculus is based on a notational simplification of the concept of quantity. A key element of the notational simplification is that we consider units intentionally unspecified numbers that are measures of exactly specified objects, states or processes. This interpretation of quantity calculus combines all the advantages (...) of calculating with numerical values (since the values of quantities are numbers, we can do with them everything we do with numbers) and all the advantages of calculating with classically conceived quantities (calculus is invariant to the choice of units and has built-in dimensional analysis). This also shows that the whole metaphysics of the common concept of quantities and their magnitudes is irrelevant to quantity calculus. As an application of this interpretation of quantity calculus, an easy proof of dimensional homogeneity of physical laws is given. (shrink)
From Tarde to Deleuze and Foucault: The Infinitesimal Revolution -/- ,Palgrave Macmillan: London, 2018; 154 pp.: ISBN 9783319551487 -/- Sergio Tonkonoff,.
This book posits that a singular paradigm in social theory can be discovered by reconstructing the conceptual grammar of Gabriel Tarde’s micro-sociology and by understanding the ways in which Gilles Deleuze’s micro-politics and Michel Foucault’s micro-physics have engaged with it. This is articulated in the infinite social multiplicity-invention-imitation-opposition-open system. Guided by infinitist ontology and an epistemology of infinitesimal difference, this paradigm offers a micro-socio-logic capable of producing new ways of understanding social life and its vicissitudes. In the field of (...) social theory, this can be called the infinitesimal revolution. (shrink)
John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...) W. Leibniz to Lambert and Gottfried Ploucquet. While Kant is evidently open to using mathematical tools in logic, his main concern is to clarify what mathematical tools can be used to achieve. For without such clarification, all efforts at introducing mathematical tools into logic would be blind if not complete waste of time. In the end, Kant would stress, the means provided by formal logic at best help us to express and order what we already know in some sense. No matter how much mathematical notations may enhance the precision of this function of formal logic, it does not change the fact that no truths can, strictly speaking, be revealed or established by means of those notations. (shrink)
Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy. In contrast to other linear calculi of natural deduction, derivations in this calculus are sequences of object-language sentences which do not require graphical or other means of commentary in order to keep track of assumptions or to indicate subproofs. (Translation of our German paper (...) "Ein Redehandlungskalkül. Ein pragmatisierter Kalkül des natürlichen Schließens nebst Metatheorie"; online available at http://philpapers.org/rec/CORERE.). (shrink)
All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
The purpose of this paper is to outline an alternative approach to introductory logic courses. Traditional logic courses usually focus on the method of natural deduction or introduce predicate calculus as a system. These approaches complicate the process of learning different techniques for dealing with categorical and hypothetical syllogisms such as alternate notations or alternate forms of analyzing syllogisms. The author's approach takes up observations made by Dijkstrata and assimilates them into a reasoning process based on modified notations. The (...) author's model adopts a notation that addresses the essentials of a problem while remaining easily manipulated to serve other analytic frameworks. The author also discusses the pedagogical benefits of incorporating the model into introductory logic classes for topics ranging from syllogisms to predicate calculus. Since this method emphasizes the development of a clear and manipulable notation, students can worry less about issues of translation, can spend more energy solving problems in the terms in which they are expressed, and are better able to think in abstract terms. (shrink)
It is fair to say that Georg Wilhelm Friedrich Hegel's philosophy of mathematics and his interpretation of the calculus in particular have not been popular topics of conversation since the early part of the twentieth century. Changes in mathematics in the late nineteenth century, the new set-theoretical approach to understanding its foundations, and the rise of a sympathetic philosophical logic have all conspired to give prior philosophies of mathematics (including Hegel's) the untimely appearance of naïveté. The common view was (...) expressed by Bertrand Russell: -/- The great [mathematicians] of the seventeenth and eighteenth centuries were so much impressed by the results of their new methods that they did not trouble to examine their foundations. Although their arguments were fallacious, a special Providence saw to it that their conclusions were more or less true. Hegel fastened upon the obscurities in the foundations of mathematics, turned them into dialectical contradictions, and resolved them by nonsensical syntheses. . . .The resulting puzzles [of mathematics] were all cleared up during the nineteenth century, not by heroic philosophical doctrines such as that of Kant or that of Hegel, but by patient attention to detail (1956, 368–69). (shrink)
The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry's logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is (...) not to clarify finite probability theory but to elucidate quantum mechanics itself by seeing some of its quantum features in a classical setting. (shrink)
The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first (...) order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics. (shrink)
By pure calculus of names we mean a quantifier-free theory, based on the classical propositional calculus, which defines predicates known from Aristotle’s syllogistic and Leśniewski’s Ontology. For a large fragment of the theory decision procedures, defined by a combination of simple syntactic operations and models in two-membered domains, can be used. We compare the system which employs `ε’ as the only specific term with the system enriched with functors of Syllogistic. In the former, we do not need an (...) empty name in the model, so we are able to construct a 3-valued matrix, while for the latter, for which an empty name is necessary, the respective matrices are 4-valued. (shrink)
In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly (...) reasonable symmetry principles. Moreover, the examples here are immune to the objections against Williamson’s infinite coin flips. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.