Results for 'Infinitesimal Calculus'

215 found
Order:
  1. The Differential Point of View of the Infinitesimal Calculus in Spinoza, Leibniz and Deleuze.Simon Duffy - 2006 - Journal of the British Society for Phenomenology 37 (3):286-307.
    In Hegel ou Spinoza,1 Pierre Macherey challenges the influence of Hegel’s reading of Spinoza by stressing the degree to which Spinoza eludes the grasp of the Hegelian dialectical progression of the history of philosophy. He argues that Hegel provides a defensive misreading of Spinoza, and that he had to “misread him” in order to maintain his subjective idealism. The suggestion being that Spinoza’s philosophy represents, not a moment that can simply be sublated and subsumed within the dialectical progression of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Leibniz y las matemáticas: Problemas en torno al cálculo infinitesimal / Leibniz on Mathematics: Problems Concerning Infinitesimal calculus.Alberto Luis López - 2018 - In Luis Antonio Velasco Guzmán & Víctor Manuel Hernández Márquez (eds.), Gottfried Wilhelm Leibniz: Las bases de la modernidad. México: Universidad Nacional Autónoma de México. pp. 31-62.
    El cálculo infinitesimal elaborado por Leibniz en la segunda mitad del siglo XVII tuvo, como era de esperarse, muchos adeptos pero también importantes críticos. Uno pensaría que cuatro siglos después de haber sido presentado éste, en las revistas, academias y sociedades de la época, habría ya poco qué decir sobre el mismo; sin embargo, cuando uno se acerca al cálculo de Leibniz –tal y como me sucedió hace tiempo– fácilmente puede percatarse de que el debate en torno al cálculo (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  3. Infinitesimal Differences: Controversies Between Leibniz and His Contemporaries. [REVIEW]Françoise Monnoyeur-Broitman - 2010 - Journal of the History of Philosophy 48 (4):527-528.
    Leibniz is well known for his formulation of the infinitesimal calculus. Nevertheless, the nature and logic of his discovery are seldom questioned: does it belong more to mathematics or metaphysics, and how is it connected to his physics? This book, composed of fourteen essays, investigates the nature and foundation of the calculus, its relationship to the physics of force and principle of continuity, and its overall method and metaphysics. The Leibnizian calculus is presented in its origin (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Is Leibnizian Calculus Embeddable in First Order Logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Hermann Cohen’s Principle of the Infinitesimal Method: A Defense.Scott Edgar - 2020 - Hopos: The Journal of the International Society for the History of Philosophy of Science 10 (2):440-470.
    In Bertrand Russell's 1903 Principles of Mathematics, he offers an apparently devastating criticism of the neo-Kantian Hermann Cohen's Principle of the Infinitesimal Method and its History (PIM). Russell's criticism is motivated by his concern that Cohen's account of the foundations of calculus saddles mathematics with the paradoxes of the infinitesimal and continuum, and thus threatens the very idea of mathematical truth. This paper defends Cohen against that objection of Russell's, and argues that properly understood, Cohen's views of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. Maimon’s Theory of Differentials As The Elements of Intuitions.Simon Duffy - 2014 - International Journal of Philosophical Studies 22 (2):1-20.
    Maimon’s theory of the differential has proved to be a rather enigmatic aspect of his philosophy. By drawing upon mathematical developments that had occurred earlier in the century and that, by virtue of the arguments presented in the Essay and comments elsewhere in his writing, I suggest Maimon would have been aware of, what I propose to offer in this paper is a study of the differential and the role that it plays in the Essay on Transcendental Philosophy (1790). In (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  7. Schizo‐Math.Simon Duffy - 2004 - Angelaki 9 (3):199 – 215.
    In the paper “Math Anxiety,” Aden Evens explores the manner by means of which concepts are implicated in the problematic Idea according to the philosophy of Gilles Deleuze. The example that Evens draws from Difference and Repetition in order to demonstrate this relation is a mathematics problem, the elements of which are the differentials of the differential calculus. What I would like to offer in the present paper is an historical account of the mathematical problematic that Deleuze deploys in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Infinitesimals as an Issue of Neo-Kantian Philosophy of Science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  9. Deleuze, Leibniz and Projective Geometry in the Fold.Simon Duffy - 2010 - Angelaki 15 (2):129-147.
    Explications of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in 'The Fold: Leibniz and the Baroque' focus predominantly on the role of the infinitesimal calculus developed by Leibniz.1 While not underestimat- ing the importance of the infinitesimal calculus and the law of continuity as reflected in the calculus of infinite series to any understanding of Leibniz’s metaphysics and to Deleuze’s reconstruction of it in The Fold, what I propose to examine in this paper is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10.  75
    Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and the Fold: A Critical Reader. Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11.  80
    The Question of Deleuze’s Neo-Leibnizianism.Simon B. Duffy - 2012 - In Patricia Pisters & Rosi Braidotti (eds.), Down by Law: Revisiting Normativity with Deleuze. Bloomsbury Academic.
    Much has been made of Deleuze’s Neo-Leibnizianism,3 however not very much detailed work has been done on the specific nature of Deleuze’s critique of Leibniz that positions his work within the broader framework of Deleuze’s own philo- sophical project. The present chapter undertakes to redress this oversight by providing an account of the reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold. Deleuze provides a systematic account of the structure of Leibniz’s metaphys- ics in terms of its mathematical underpinnings. (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  12. The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal (...) in his treatment of the problem of the infinitesimal. Against the role that Hegel assigns to integration as the inverse transformation of differentiation in the development of his dialectical logic, Deleuze strategically redeploys Leibniz's account of integration as a method of summation in the form of a series in the development of his philosophy of difference. By demonstrating the relation between the differential point of view of the Leibnizian infinitesimal calculus and the differential calculus of contemporary mathematics, I argue that Deleuze effectively bypasses the methods of the differential calculus which Hegel uses to support the development of the dialectical logic, and by doing so, sets up the critical perspective from which to construct an alternative logic of relations characteristic of a philosophy of difference. The mode of operation of this logic is then demonstrated by drawing upon the mathematical philosophy of Albert Lautman (1908-44), which plays a significant role in Deleuze's project of constructing a philosophy of difference. Indeed, the logic of relations that Deleuze constructs is dialectical in the Lautmanian sense. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Acts of Time: Cohen and Benjamin on Mathematics and History.Julia Ng - 2017 - Paradigmi. Rivista di Critica Filosofica 2017 (1):41-60.
    This paper argues that the principle of continuity that underlies Benjamin’s understanding of what makes the reality of a thing thinkable, which in the Kantian context implies a process of “filling time” with an anticipatory structure oriented to the subject, is of a different order than that of infinitesimal calculus—and that a “discontinuity” constitutive of the continuity of experience and (merely) counterposed to the image of actuality as an infinite gradation of ultimately thetic acts cannot be the principle (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  14.  61
    Review of M. Giaquinto's Visual Thinking in Mathematics. [REVIEW]Andrew Arana - 2009 - Analysis 69 (2):401-403.
    Our visual experience seems to suggest that no continuous curve can cover every point of the unit square, yet in the late nineteenth century Giuseppe Peano proved that such a curve exists. Examples like this, particularly in analysis (in the sense of the infinitesimal calculus) received much attention in the nineteenth century. They helped instigate what Hans Hahn called a “crisis of intuition”, wherein visual reasoning in mathematics came to be thought to be epistemically problematic. Hahn described this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  30
    Continuidade na lógica de Leibniz.Vivianne Moreira - 2010 - Analytica (Rio) 14 (1):103-137.
    This paper is intended to examine Leibniz's Principle of Continuity, as well as the conditions of its application in leibnizian infinitesimal calculus, in the light of some aspects of formal language developed by Leibniz. It aims at evaluating whether, and to what extent, that principle can be justified on the basis of the logic of Leibniz.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  16. On the Fundamental Meaning of the Principle of Least Action and Consequences for a "Dynamic" Quantum Physics.Helmut Tributsch - 2016 - Journal of Modern Physics 7:365-374.
    The principle of least action, which has so successfully been applied to diverse fields of physics looks back at three centuries of philosophical and mathematical discussions and controversies. They could not explain why nature is applying the principle and why scalar energy quantities succeed in describing dynamic motion. When the least action integral is subdivided into infinitesimal small sections each one has to maintain the ability to minimise. This however has the mathematical consequence that the Lagrange function at a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Infinitesimal Probabilities.Sylvia Wenmackers - 2016 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Polynomial Ring Calculus for Modal Logics: A New Semantics and Proof Method for Modalities: Polynomial Ring Calculus for Modal Logics.Juan C. Agudelo - 2011 - Review of Symbolic Logic 4 (1):150-170.
    A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19.  53
    A Calculus for Belnap's Logic in Which Each Proof Consists of Two Trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  20. A Cut-Free Sequent Calculus for Defeasible Erotetic Inferences.Jared Millson - 2019 - Studia Logica (6):1-34.
    In recent years, the e ffort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21. The Narrative Calculus.Antti Kauppinen - 2015 - Oxford Studies in Normative Ethics 5.
    This paper examines systematically which features of a life story (or history) make it good for the subject herself - not aesthetically or morally good, but prudentially good. The tentative narrative calculus presented claims that the prudential narrative value of an event is a function of the extent to which it contributes to her concurrent and non-concurrent goals, the value of those goals, and the degree to which success in reaching the goals is deserved in virtue of exercising agency. (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   8 citations  
  22.  77
    A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  24. A Nonmonotonic Sequent Calculus for Inferentialist Expressivists.Ulf Hlobil - 2016 - In Pavel Arazim & Michal Dančák (eds.), The Logica Yearbook 2015. College Publications. pp. 87-105.
    I am presenting a sequent calculus that extends a nonmonotonic consequence relation over an atomic language to a logically complex language. The system is in line with two guiding philosophical ideas: (i) logical inferentialism and (ii) logical expressivism. The extension defined by the sequent rules is conservative. The conditional tracks the consequence relation and negation tracks incoherence. Besides the ordinary propositional connectives, the sequent calculus introduces a new kind of modal operator that marks implications that hold monotonically. Transitivity (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   5 citations  
  26. The Quantified Argument Calculus and Natural Logic.Hanoch Ben-Yami - forthcoming - Dialectica.
    The formalisation of Natural Language arguments in a formal language close to it in syntax has been a central aim of Moss’s Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to Natural Language than are Moss’s systems – for instance, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. A Tableau Calculus for Partial Functions.Manfred Kerber Michael Kohlhase - unknown
    Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We solve this (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  28.  79
    From Tarde to Deleuze and Foucault. The Infinitesimal Revolution.Sergio Tonkonoff - 2017 - New York, USA: Palgrave Macmillan.
    This book posits that a singular paradigm in social theory can be discovered by reconstructing the conceptual grammar of Gabriel Tarde’s micro-sociology and by understanding the ways in which Gilles Deleuze’s micro-politics and Michel Foucault’s micro-physics have engaged with it. This is articulated in the infinite social multiplicity-invention-imitation-opposition-open system. Guided by infinitist ontology and an epistemology of infinitesimal difference, this paradigm offers a micro-socio-logic capable of producing new ways of understanding social life and its vicissitudes. In the field of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Static and Dynamic Vector Semantics for Lambda Calculus Models of Natural Language.Mehrnoosh Sadrzadeh & Reinhard Muskens - 2018 - Journal of Language Modelling 6 (2):319-351.
    Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Deleuze on Leibniz : Difference, Continuity, and the Calculus.Daniel W. Smith - 2005 - In Current Continental Theory and Modern Philosophy. Northwestern University Press.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32.  97
    A Simple Interpretation of Quantity Calculus.Boris Culina - manuscript
    A simple interpretation of quantity calculus is given. Quantities are described as functions from objects, states or processes (or some combination of them) into numbers that satisfy the mutual measurability property. Quantity calculus is based on a notational simplification of the concept of quantity. A key element of the notational simplification is that we consider units intentionally unspecified numbers that are measures of exactly specified objects, states or processes. This interpretation of quantity calculus combines all the advantages (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. From Tarde to Deleuze and Foucault: The Infinitesimal Revolution (Review).Tony D. Sampson - 2019 - International Sociology 34 (5):545-7.
    From Tarde to Deleuze and Foucault: The Infinitesimal Revolution -/- ,Palgrave Macmillan: London, 2018; 154 pp.: ISBN 9783319551487 -/- Sergio Tonkonoff,.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  34.  19
    From Tarde to Foucault and Deleuze. The Infinitesimal Revolution.Sergio Tonkonoff - 2017 - New York: Palgrave Macmillan.
    This book posits that a singular paradigm in social theory can be discovered by reconstructing the conceptual grammar of Gabriel Tarde’s micro-sociology and by understanding the ways in which Gilles Deleuze’s micro-politics and Michel Foucault’s micro-physics have engaged with it. This is articulated in the infinite social multiplicity-invention-imitation-opposition-open system. Guided by infinitist ontology and an epistemology of infinitesimal difference, this paradigm offers a micro-socio-logic capable of producing new ways of understanding social life and its vicissitudes. In the field of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. From Logical Calculus to Logical Formality—What Kant Did with Euler’s Circles.Huaping Lu-Adler - 2017 - In Corey W. Dyck & Falk Wunderlich (eds.), Kant and His German Contemporaries : Volume 1, Logic, Mind, Epistemology, Science and Ethics. Cambridge: Cambridge University Press. pp. 35-55.
    John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-Theory.Moritz Cordes & Friedrich Reinmuth - manuscript
    Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy. In contrast to other linear calculi of natural deduction, derivations in this calculus are sequences of object-language sentences which do not require graphical or other means of commentary in order to keep track of assumptions or to indicate subproofs. (Translation of our German paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  20
    Of the Exterior Calculus and Relativistic Quantum Mechanics.Jose G. Vargas - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  38. Completeness of a Hypersequent Calculus for Some First-Order Gödel Logics with Delta.Matthias Baaz, Norbert Preining & Richard Zach - 2006 - In 36th International Symposium on Multiple-valued Logic. May 2006, Singapore. Proceedings. Los Alamitos: IEEE Press.
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
    Download  
     
    Export citation  
     
    Bookmark  
  39. From Syllogism to Predicate Calculus.Thomas J. McQuade - 1994 - Teaching Philosophy 17 (4):293-309.
    The purpose of this paper is to outline an alternative approach to introductory logic courses. Traditional logic courses usually focus on the method of natural deduction or introduce predicate calculus as a system. These approaches complicate the process of learning different techniques for dealing with categorical and hypothetical syllogisms such as alternate notations or alternate forms of analyzing syllogisms. The author's approach takes up observations made by Dijkstrata and assimilates them into a reasoning process based on modified notations. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Hegel on Calculus.Christopher Yeomans & Ralph Kaufmann - 2017 - History of Philosophy Quarterly 34 (4):371-390.
    It is fair to say that Georg Wilhelm Friedrich Hegel's philosophy of mathematics and his interpretation of the calculus in particular have not been popular topics of conversation since the early part of the twentieth century. Changes in mathematics in the late nineteenth century, the new set-theoretical approach to understanding its foundations, and the rise of a sympathetic philosophical logic have all conspired to give prior philosophies of mathematics (including Hegel's) the untimely appearance of naïveté. The common view was (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Hallden Incomplete Calculus of Names.Piotr Kulicki - 2010 - Buletin of the Section of Logic 39 (1/2):53-55.
    Download  
     
    Export citation  
     
    Bookmark  
  42. A Survey of Geometric Algebra and Geometric Calculus.Alan Macdonald - 2017 - Advances in Applied Clifford Algebras 27:853-891.
    The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
    Download  
     
    Export citation  
     
    Bookmark  
  43. A Simple Logical Matrix and Sequent Calculus for Parry’s Logic of Analytic Implication.Damian E. Szmuc - forthcoming - Studia Logica:1-38.
    We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry's logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
    Download  
     
    Export citation  
     
    Bookmark  
  44. On Classical Finite Probability Theory as a Quantum Probability Calculus.David Ellerman - manuscript
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or "toy" model of quantum mechanics over sets (QM/sets). There are two parts. The notion of an "event" is reinterpreted from being an epistemological state of indefiniteness to being an objective state of indefiniteness. And the mathematical framework of finite probability theory is recast as the quantum probability calculus for QM/sets. The point is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Strong Normalization of a Symmetric Lambda Calculus for Second-Order Classical Logic.Yoriyuki Yamagata - 2002 - Archive for Mathematical Logic 41 (1):91-99.
    Download  
     
    Export citation  
     
    Bookmark  
  46.  71
    Understanding and Calculating the Odds: Probability Theory Basics and Calculus Guide for Beginners, with Applications in Games of Chance and Everyday Life.Catalin Barboianu - 2006 - Craiova, Romania: Infarom.
    Download  
     
    Export citation  
     
    Bookmark  
  47. Axiomatic Investigations of the Propositional Calculus of Principia Mathematica.Paul Bernays - 2012 - In Universal Logic: An Anthology. New York and Basel: pp. 43-58.
    Download  
     
    Export citation  
     
    Bookmark  
  48.  79
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  49. On Minimal Models for Pure Calculi of Names.Piotr Kulicki - 2013 - Logic and Logical Philosophy 22 (4):429–443.
    By pure calculus of names we mean a quantifier-free theory, based on the classical propositional calculus, which defines predicates known from Aristotle’s syllogistic and Leśniewski’s Ontology. For a large fragment of the theory decision procedures, defined by a combination of simple syntactic operations and models in two-membered domains, can be used. We compare the system which employs `ε’ as the only specific term with the system enriched with functors of Syllogistic. In the former, we do not need an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. More Trouble for Regular Probabilitites.Matthew W. Parker - 2012
    In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 215