Switch to: Citations

Add references

You must login to add references.
  1. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   163 citations  
  • Classical proof forestry.Willem Heijltjes - 2010 - Annals of Pure and Applied Logic 161 (11):1346-1366.
    Classical proof forests are a proof formalism for first-order classical logic based on Herbrand’s Theorem and backtracking games in the style of Coquand. First described by Miller in a cut-free setting as an economical representation of first-order and higher-order classical proof, defining features of the forests are a strict focus on witnessing terms for quantifiers and the absence of inessential structure, or ‘bureaucracy’.This paper presents classical proof forests as a graphical proof formalism and investigates the possibility of composing forests by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Exact Bounds for lengths of reductions in typed λ-calculus.Arnold Beckmann - 2001 - Journal of Symbolic Logic 66 (3):1277-1285.
    We determine the exact bounds for the length of an arbitrary reduction sequence of a term in the typed λ-calculus with β-, ξ- and η-conversion. There will be two essentially different classifications, one depending on the height and the degree of the term and the other depending on the length and the degree of the term.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the non-confluence of cut-elimination.Matthias Baaz & Stefan Hetzl - 2011 - Journal of Symbolic Logic 76 (1):313 - 340.
    We study cut-elimination in first-order classical logic. We construct a sequence of polynomial-length proofs having a non-elementary number of different cut-free normal forms. These normal forms are different in a strong sense: they not only represent different Herbrand-disjunctions but also differ in their propositional structure. This result illustrates that the constructive content of a proof in classical logic is not uniquely determined but rather depends on the chosen method for extracting it.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Shoenfield is Gödel after Krivine.Thomas Streicher & Ulrich Kohlenbach - 2007 - Mathematical Logic Quarterly 53 (2):176-179.
    We show that Shoenfield's functional interpretation of Peano arithmetic can be factorized as a negative translation due to J. L. Krivine followed by Gödel's Dialectica interpretation. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A semantics of evidence for classical arithmetic.Thierry Coquand - 1995 - Journal of Symbolic Logic 60 (1):325-337.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A compact representation of proofs.Dale A. Miller - 1987 - Studia Logica 46 (4):347 - 370.
    A structure which generalizes formulas by including substitution terms is used to represent proofs in classical logic. These structures, called expansion trees, can be most easily understood as describing a tautologous substitution instance of a theorem. They also provide a computationally useful representation of classical proofs as first-class values. As values they are compact and can easily be manipulated and transformed. For example, we present an explicit transformations between expansion tree proofs and cut-free sequential proofs. A theorem prover which represents (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Extracting Herbrand disjunctions by functional interpretation.Philipp Gerhardy & Ulrich Kohlenbach - 2005 - Archive for Mathematical Logic 44 (5):633-644.
    Abstract.Carrying out a suggestion by Kreisel, we adapt Gödel’s functional interpretation to ordinary first-order predicate logic(PL) and thus devise an algorithm to extract Herbrand terms from PL-proofs. The extraction is carried out in an extension of PL to higher types. The algorithm consists of two main steps: first we extract a functional realizer, next we compute the β-normal-form of the realizer from which the Herbrand terms can be read off. Even though the extraction is carried out in the extended language, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A herbrandized functional interpretation of classical first-order logic.Fernando Ferreira & Gilda Ferreira - 2017 - Archive for Mathematical Logic 56 (5-6):523-539.
    We introduce a new typed combinatory calculus with a type constructor that, to each type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, associates the star type σ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^*$$\end{document} of the nonempty finite subsets of elements of type σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}. We prove that this calculus enjoys the properties of strong normalization and confluence. With the aid of this star combinatory (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations