Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Generalized quantifiers and natural language.John Barwise & Robin Cooper - 1981 - Linguistics and Philosophy 4 (2):159--219.
    Download  
     
    Export citation  
     
    Bookmark   603 citations  
  • (1 other version)Generalized Quantifiers and Natural Language.Jon Barwise - 1980 - Linguistics and Philosophy 4:159.
    Download  
     
    Export citation  
     
    Bookmark   397 citations  
  • First order predicate logic with generalized quantifiers.Per Lindström - 1966 - Theoria 32 (3):186--195.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • (2 other versions)On a generalization of quantifiers.Andrzej Mostowski - 1957 - Fundamenta Mathematicae 44 (2):12--36.
    Download  
     
    Export citation  
     
    Bookmark   170 citations  
  • On Extensions of Elementary Logic.Per Lindström - 1969 - Theoria 35 (1):1-11.
    Download  
     
    Export citation  
     
    Bookmark   112 citations  
  • Logic with the quantifier “there exist uncountably many”.H. Jerome Keisler - 1970 - Annals of Mathematical Logic 1 (1):1-93.
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • On branching quantifiers in English.Jon Barwise - 1979 - Journal of Philosophical Logic 8 (1):47 - 80.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • One hundred and two problems in mathematical logic.Harvey Friedman - 1975 - Journal of Symbolic Logic 40 (2):113-129.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • (1 other version)Infinitary logic and admissible sets.Jon Barwise - 1969 - Journal of Symbolic Logic 34 (2):226-252.
    In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Axioms for abstract model theory.K. Jon Barwise - 1974 - Annals of Mathematical Logic 7 (2-3):221-265.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Stationary logic.Jon Barwise - 1978 - Annals of Mathematical Logic 13 (2):171.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • (1 other version)Absolute logics and L∞ω.K. Jon Barwise - 1972 - Annals of Mathematical Logic 4 (3):309-340.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Remarks in abstract model theory.Saharon Shelah - 1985 - Annals of Pure and Applied Logic 29 (3):255-288.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A correction to “stationary logic”.Jon Barwise, Matt Kaufmann & Michael Makkai - 1981 - Annals of Mathematical Logic 20 (2):231-232.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Axioms for abstract model theory.K. J. Barwise - 1974 - Annals of Mathematical Logic 7 (2-3):221-265.
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The role of the Omitting Types Theorem in infinitary logic.Jon Barwise - 1981 - Archive for Mathematical Logic 21 (1):55-68.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Etude de Certains Operateurs Dans Les Classes de Relations, Definis A Partir D'isomorphismes Restreints.Roland Fraïssé - 1956 - Mathematical Logic Quarterly 2 (5-7):59-75.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The theorems of beth and Craig in abstract model theory II. Compact logics.J. A. Makowsky & S. Shelah - 1981 - Archive for Mathematical Logic 21 (1):13-35.
    Download  
     
    Export citation  
     
    Bookmark   9 citations