Switch to: Citations

Add references

You must login to add references.
  1. The Least Measurable Can Be Strongly Compact and Indestructible.Arthur Apter & Moti Gitik - 1998 - Journal of Symbolic Logic 63 (4):1404-1412.
    We show the consistency, relative to a supercompact cardinal, of the least measurable cardinal being both strongly compact and fully Laver indestructible. We also show the consistency, relative to a supercompact cardinal, of the least strongly compact cardinal being somewhat supercompact yet not completely supercompact and having both its strong compactness and degree of supercompactness fully Laver indestructible.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.
    The lottery preparation, a new general kind of Laver preparation, works uniformly with supercompact cardinals, strongly compact cardinals, strong cardinals, measurable cardinals, or what have you. And like the Laver preparation, the lottery preparation makes these cardinals indestructible by various kinds of further forcing. A supercompact cardinal κ, for example, becomes fully indestructible by <κ-directed closed forcing; a strong cardinal κ becomes indestructible by κ-strategically closed forcing; and a strongly compact cardinal κ becomes indestructible by, among others, the forcing to (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • The negation of the singular cardinal hypothesis from o(K)=K++.Moti Gitik - 1989 - Annals of Pure and Applied Logic 43 (3):209-234.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Indestructibility, HOD, and the Ground Axiom.Arthur W. Apter - 2011 - Mathematical Logic Quarterly 57 (3):261-265.
    Let φ1 stand for the statement V = HOD and φ2 stand for the Ground Axiom. Suppose Ti for i = 1, …, 4 are the theories “ZFC + φ1 + φ2,” “ZFC + ¬φ1 + φ2,” “ZFC + φ1 + ¬φ2,” and “ZFC + ¬φ1 + ¬φ2” respectively. We show that if κ is indestructibly supercompact and λ > κ is inaccessible, then for i = 1, …, 4, Ai = df{δ κ is inaccessible. We show it is also (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility and measurable cardinals with few and many measures.Arthur W. Apter - 2008 - Archive for Mathematical Logic 47 (2):101-110.
    If κ < λ are such that κ is indestructibly supercompact and λ is measurable, then we show that both A = {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ carries the maximal number of normal measures} and B = {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ carries fewer than the maximal number of normal measures} are unbounded (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Universal partial indestructibility and strong compactness.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (5):524-531.
    For any ordinal δ, let λδ be the least inaccessible cardinal above δ. We force and construct a model in which the least supercompact cardinal κ is indestructible under κ-directed closed forcing and in which every measurable cardinal δ < κ is < λδ strongly compact and has its < λδ strong compactness indestructible under δ-directed closed forcing of rank less than λδ. In this model, κ is also the least strongly compact cardinal. We also establish versions of this result (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Small forcing makes any cardinal superdestructible.Joel David Hamkins - 1998 - Journal of Symbolic Logic 63 (1):51-58.
    Small forcing always ruins the indestructibility of an indestructible supercompact cardinal. In fact, after small forcing, any cardinal κ becomes superdestructible--any further <κ--closed forcing which adds a subset to κ will destroy the measurability, even the weak compactness, of κ. Nevertheless, after small forcing indestructible cardinals remain resurrectible, but never strongly resurrectible.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Identity crises and strong compactness.Arthur W. Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.
    Combining techniques of the first author and Shelah with ideas of Magidor, we show how to get a model in which, for fixed but arbitrary finite n, the first n strongly compact cardinals κ 1 ,..., κ n are so that κ i for i = 1,..., n is both the i th measurable cardinal and κ + i supercompact. This generalizes an unpublished theorem of Magidor and answers a question of Apter and Shelah.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The least measurable can be strongly compact and indestructible.Arthur W. Apter & Moti Gitik - 1998 - Journal of Symbolic Logic 63 (4):1404-1412.
    We show the consistency, relative to a supercompact cardinal, of the least measurable cardinal being both strongly compact and fully Laver indestructible. We also show the consistency, relative to a supercompact cardinal, of the least strongly compact cardinal being somewhat supercompact yet not completely supercompact and having both its strong compactness and degree of supercompactness fully Laver indestructible.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Small Forcing Makes any Cardinal Superdestructible.Joel Hamkins - 1998 - Journal of Symbolic Logic 63 (1):51-58.
    Small forcing always ruins the indestructibility of an indestructible supercompact cardinal. In fact, after small forcing, any cardinal $\kappa$ becomes superdestructible--any further <$\kappa$--closed forcing which adds a subset to $\kappa$ will destroy the measurability, even the weak compactness, of $\kappa$. Nevertheless, after small forcing indestructible cardinals remain resurrectible, but never strongly resurrectible.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Strong axioms of infinity and elementary embeddings.Robert M. Solovay - 1978 - Annals of Mathematical Logic 13 (1):73.
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Indestructibility and stationary reflection.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):228-236.
    If κ < λ are such that κ is a strong cardinal whose strongness is indestructible under κ -strategically closed forcing and λ is weakly compact, then we show thatA = {δ < κ | δ is a non-weakly compact Mahlo cardinal which reflects stationary sets}must be unbounded in κ. This phenomenon, however, need not occur in a universe with relatively few large cardinals. In particular, we show how to construct a model where no cardinal is supercompact up to a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The negation of the singular cardinal hypothesis from< i> o(< i> K_)=< i> K< sup>++.Moti Gitik - 1989 - Annals of Pure and Applied Logic 43 (3):209-234.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On measurable cardinals violating the continuum hypothesis.Moti Gitik - 1993 - Annals of Pure and Applied Logic 63 (3):227-240.
    Gitik, M., On measurable cardinals violating the continuum hypothesis, Annals of Pure and Applied Logic 63 227-240. It is shown that an extender used uncountably many times in an iteration is reconstructible. This together with the Weak Covering Lemma is used to show that the assumption o=κ+α is necessary for a measurable κ with 2κ=κ+α.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Indestructibility and level by level equivalence and inequivalence.Arthur W. Apter - 2007 - Mathematical Logic Quarterly 53 (1):78-85.
    If κ < λ are such that κ is indestructibly supercompact and λ is 2λ supercompact, it is known from [4] that {δ < κ | δ is a measurable cardinal which is not a limit of measurable cardinals and δ violates level by level equivalence between strong compactness and supercompactness}must be unbounded in κ. On the other hand, using a variant of the argument used to establish this fact, it is possible to prove that if κ < λ are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Indestructibility, measurability, and degrees of supercompactness.Arthur W. Apter - 2012 - Mathematical Logic Quarterly 58 (1):75-82.
    Suppose that κ is indestructibly supercompact and there is a measurable cardinal λ > κ. It then follows that A1 = {δ < κ∣δ is measurable, δ is not a limit of measurable cardinals, and δ is not δ+ supercompact} is unbounded in κ. If in addition λ is 2λ supercompact, then A2 = {δ < κ∣δ is measurable, δ is not a limit of measurable cardinals, and δ is δ+ supercompact} is unbounded in κ as well. The large cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.
    Suppose λ > κ is measurable. We show that if κ is either indestructibly supercompact or indestructibly strong, then A = {δ < κ | δ is measurable, yet δ is neither δ + strongly compact nor a limit of measurable cardinals} must be unbounded in κ. The large cardinal hypothesis on λ is necessary, as we further demonstrate by constructing via forcing two models in which ${A = \emptyset}$ . The first of these contains a supercompact cardinal κ and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.
    Can a supercompact cardinal κ be Laver indestructible when there is a level-by-level agreement between strong compactness and supercompactness? In this article, we show that if there is a sufficiently large cardinal above κ, then no, it cannot. Conversely, if one weakens the requirement either by demanding less indestructibility, such as requiring only indestructibility by stratified posets, or less level-by-level agreement, such as requiring it only on measure one sets, then yes, it can.
    Download  
     
    Export citation  
     
    Bookmark   20 citations