Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Proof Theory and Logical Complexity.Helmut Pfeifer & Jean-Yves Girard - 1989 - Journal of Symbolic Logic 54 (4):1493.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Essai philosophique sur les probabilités.Pierre-Simon Laplace & Maurice Solovine - 1814 - Revue de Métaphysique et de Morale 30 (1):1-2.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • (1 other version)On weak completeness of intuitionistic predicate logic.G. Kreisel - 1962 - Journal of Symbolic Logic 27 (2):139-158.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Interpreting classical theories in constructive ones.Jeremy Avigad - 2000 - Journal of Symbolic Logic 65 (4):1785-1812.
    A number of classical theories are interpreted in analogous theories that are based on intuitionistic logic. The classical theories considered include subsystems of first- and second-order arithmetic, bounded arithmetic, and admissible set theory.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (2 other versions)Computable Structures and the Hyperarithmetical Hierarchy.Valentina Harizanov - 2001 - Bulletin of Symbolic Logic 7 (3):383-385.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Interpretation of analysis by means of constructive functionals of finite types.Georg Kreisel - 1959 - In A. Heyting (ed.), Constructivity in mathematics. Amsterdam,: North-Holland Pub. Co.. pp. 101--128.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Über eine bisher noch nicht benützte erweiterung Des finiten standpunktes.Von Kurt Gödel - 1958 - Dialectica 12 (3‐4):280-287.
    ZusammenfassungP. Bernays hat darauf hingewiesen, dass man, um die Widerspruchs freiheit der klassischen Zahlentheorie zu beweisen, den Hilbertschen flniter Standpunkt dadurch erweitern muss, dass man neben den auf Symbole sich beziehenden kombinatorischen Begriffen gewisse abstrakte Begriffe zulässt, Die abstrakten Begriffe, die bisher für diesen Zweck verwendet wurden, sinc die der konstruktiven Ordinalzahltheorie und die der intuitionistischer. Logik. Es wird gezeigt, dass man statt deesen den Begriff einer berechenbaren Funktion endlichen einfachen Typs über den natürlichen Zahler benutzen kann, wobei keine anderen (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • Number theory and elementary arithmetic.Jeremy Avigad - 2003 - Philosophia Mathematica 11 (3):257-284.
    is a fragment of first-order aritlimetic so weak that it cannot prove the totality of an iterated exponential fimction. Surprisingly, however, the theory is remarkably robust. I will discuss formal results that show that many theorems of number theory and combinatorics are derivable in elementary arithmetic, and try to place these results in a broader philosophical context.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On the interpretation of non-finitist proofs—Part I.G. Kreisel - 1951 - Journal of Symbolic Logic 16 (4):241-267.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I.K. Gödel - 1931 - Monatshefte für Mathematik 38 (1):173--198.
    Download  
     
    Export citation  
     
    Bookmark   252 citations  
  • The Pointwise Ergodic Theorem in Subsystems of Second-Order Arithmetic.Ksenija Simic - 2007 - Journal of Symbolic Logic 72 (1):45 - 66.
    The pointwise ergodic theorem is nonconstructive. In this paper, we examine origins of this non-constructivity, and determine the logical strength of the theorem and of the auxiliary statements used to prove it. We discuss properties of integrable functions and of measure preserving transformations and give three proofs of the theorem, though mostly focusing on the one derived from the mean ergodic theorem. All the proofs can be carried out in ACA₀; moreover, the pointwise ergodic theorem is equivalent to (ACA) over (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Computable structures and the hyperarithmetical hierarchy.C. J. Ash - 2000 - New York: Elsevier. Edited by J. Knight.
    This book describes a program of research in computable structure theory. The goal is to find definability conditions corresponding to bounds on complexity which persist under isomorphism. The results apply to familiar kinds of structures (groups, fields, vector spaces, linear orderings Boolean algebras, Abelian p-groups, models of arithmetic). There are many interesting results already, but there are also many natural questions still to be answered. The book is self-contained in that it includes necessary background material from recursion theory (ordinal notations, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Hilbert's program relativized: Proof-theoretical and foundational reductions.Solomon Feferman - 1988 - Journal of Symbolic Logic 53 (2):364-384.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • Finite trees and the necessary use of large cardinals.Harvey Friedman - manuscript
    We introduce insertion domains that support the placement of new, higher, vertices into finite trees. We prove that every nonincreasing insertion domain has an element with simple structural properties in the style of classical Ramsey theory. This result is proved using standard large cardinal axioms that go well beyond the usual axioms for mathematics. We also establish that this result cannot be proved without these large cardinal axioms. We also introduce insertion rules that specify the placement of new, higher, vertices (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Relationships between constructive, predicative and classical systems of analysis.Solomon Feferman - unknown
    Both the constructive and predicative approaches to mathematics arose during the period of what was felt to be a foundational crisis in the early part of this century. Each critiqued an essential logical aspect of classical mathematics, namely concerning the unrestricted use of the law of excluded middle on the one hand, and of apparently circular \impredicative" de nitions on the other. But the positive redevelopment of mathematics along constructive, resp. predicative grounds did not emerge as really viable alternatives to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes.Kurt Gödel - 1958 - Dialectica 12 (3):280.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Fundamental notions of analysis in subsystems of second-order arithmetic.Jeremy Avigad - 2006 - Annals of Pure and Applied Logic 139 (1):138-184.
    We develop fundamental aspects of the theory of metric, Hilbert, and Banach spaces in the context of subsystems of second-order arithmetic. In particular, we explore issues having to do with distances, closed subsets and subspaces, closures, bases, norms, and projections. We pay close attention to variations that arise when formalizing definitions and theorems, and study the relationships between them.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • C. Spector. Inductively defined sets of natural numbers. Infinitistic methods, Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2-9 September 1959, Państwowe Wydawnictwo Naukowe, Warsaw, and Pergamon Press, Oxford-London-New York-Paris, 1961, pp. 97–102. [REVIEW]C. Spector - 1969 - Journal of Symbolic Logic 34 (2):295-296.
    Download  
     
    Export citation  
     
    Bookmark   5 citations